
SOS – Simple Orchestration of Services

Ricardo Queirós1 and Alberto Simões2

1 ESMAD, Polytechnic of Porto, Porto, Portugal

ricardoqueiros@esmad.ipp.pt

2 Centro Algoritmi, University of Minho, Braga, Portugal; and

Instituto Politécnico do Cávado e do Ave, Barcelos, Portugal

asimoes@ipca.pt

Abstract

Nowadays, we continue to write redundant code which can often be reused from the Web. Reusing

programming tasks is beneficial since it speeds up the process of creating applications and reduces

the errors related with the task creation from scratch. At the same time, the demands of our

applications are increasing, leading to a simple problem having to be solved through several tasks.

With the advent of the cloud, there are countless Web services that proliferate on the Web. One

solution for developers is to use these Web Services. However, the process of mastering and

coordinating all these services manually is time-consuming and error-prone.

This paper presents SOS, a Simple Orchestration of Services. The ultimate goal of this tool

is to act as a service composer while promoting the separation of concerns for two typical actors

in this realm: the developer and the business analyst. The developer must define a service as

a SOS task based on a JSON schema and submit it in a Web specialized editor. The business

analyst uses the SOS editor, in an interactive way, to chain the required tasks to solve a specific

problem. Then, the developer, uses a a simple client API – a SOS engine wrapper – to load

a SOS manifest and to iterate over all tasks, without the need to dominate any bureaucratic

aspects related with HTTP clients and messages. As a case study, several tasks are instantiated

and aggregated in order to generate a composite service for a mobile app whose goal is to give

an translated description of a picture taken with a mobile phone.

1998 ACM Subject Classification H.3.5 [Online Information Services] Web-based Services

Keywords and phrases Web services, Service Composition, Orchestration

Digital Object Identifier 10.4230/OASIcs.SLATE.2017.13

1 Introduction

Service Oriented Architecture (SOA) emerged in the early 2000s, offering a way to develop

new business services by reusing components from existing programs rather than writing

redundant code from scratch and developing new infrastructures to support them [3].

SOA can be defined as an approach to develop enterprise systems by loosely coupling

interoperable services – small units of software that perform discrete tasks – from separate

systems across different business domains [2].

A crucial aspect of SOA is service composition. Service composition is the process of

create a composite service using a set of available Web services in order to satisfy a user

request or a problem that cannot be satisfied by any individual Web service [2]. The service

composition can be defined from a global perspective (choreography) or using a central

component which coordinates the entire process (orchestration).

However, despite all the software that implements those concepts, there are few that can

be used, in a very simple way, and focused on the new paradigm of cloud services, where the

© Ricardo Queirós and Alberto Simões;
licensed under Creative Commons License CC-BY

6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirós, M. Pinto, A. Simões, J. P. Leal, and M. J. Varanda; Article No. 13; pp. 13:1–13:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

13:2 SOS – Simple Orchestration of Services

JSON specification increasingly assumes a prominent role in the data exchange formalization

within the client-server model.

In this paper we present SOS – Simple Orchestration of Services – as a tool for services

composition. The tool is composed by two components: a Web editor and a client engine.

The former allows the submission, aggregation, sharing and grading of small services defined

as SOS tasks. The later, allows developers to iterate over all the service tasks, through a

simple API.

The main advantage of this approach regarding the existent approaches is the simplicity

and the separation of concerns. Firstly, a SOS task is formalized with a simple JSON

schema. The aggregation is materialized on a JSON manifest that can be loaded from the

cloud. Then, developers through a simple API can manage the execution flow of the process

without worrying about HTTP clients and messages. Secondly, the SOS network fosters

the separation of concerns by giving to the developer the mission to formalize and submit

tasks and interact with the engine and to the business analysts the chance to compose the

tasks for the creation of a single service. The chaining process will be very simple, using

drag-and-drop techniques, and will automatically inform of invalid pairings based on the

matching of the tasks’ response/request types.

As a case study we present a composite service that receives a photo taken by a smartphone

and returns a translation definition of the photographed object.

2 Services Composition

Service composition encourages the design and aggregation of services that can be reused in

multiple scenarios. In this realm, two techniques are used: orchestration and choreography.

2.1 Orchestration vs. Choreography

Web service orchestration is a type of service composition where specific web service business

processes are controlled by a central component. This component coordinates asynchronous

interactions, flow control and business transaction management [3]. Typically, Business

process modelling notation1 (BPMN), maintained by the Object Management Group, is used

to define a visual representation of the flow and business process execution language (BPEL)

is used to write the code that executes the services.

Service choreography is a form of service composition in which the interaction protocol

between several partner services is defined from a global perspective. This could be mapped

for the dance domain, where “dancers dance following a global scenario without a single

point of control” [4]. In other words, at run-time each participant in a service choreography

executes its role according to the behaviour of the other participants [2]. Several languages

specifications appeared to model service choreographies: the Web Service Choreography

Description Language2 (WS-CDL) and the Web Service Choreography Interface3 (WSCI).

Both are XML-based specifications from the W3C for modelling choreographies. The BPMN

version 2.0 includes diagrams to model service choreographies. Other academic proposals for

service choreography languages include: Let’s Dance [5], BPEL4Chor [1] and Chor4.

1 Link: http://www.bpmn.org/.
2 Link: https://www.w3.org/TR/ws-cdl-10/.
3 Link: https://www.w3.org/TR/wsci/.
4 Link: http://www.chor-lang.org/.

R. Queirós and A. Simões 13:3

A distinction is often made between orchestration (a local view from the perspective of

one participant) and choreography (coordination from a global multi-participant perspective,

without a central controller). Although, the service orchestration is the most used and plays

an important part in a service-oriented architecture (SOA), the web service choreography, is

also often used to address the typical issues of single point-of-failure that are often found

using the orchestration paradigm [3].

2.2 Related work

The SOS tool does not intend to compete with similar tools. If we want to catalog the

proposed tool, it can be defined as an automation tool made up of small services formalized

through light specifications such as JSON. In the field of service automation tools several

tools appeared in recent years. The best examples are IFTTT5, Zapier6 and Microsoft Flow7.

IFTTT is a free web-based service that people use to create chains of simple conditional

statements, called applets. Zapier connects existent apps for the automation of workflows.

Lastly, Microsoft Flow is an automated actions service. All of them are more focused on

tasks automation and are not focused on the composition and execution flow management of

HTTP REST services.

3 SOS – Simple Orchestration of Services

This paper presents SOS as a simple system to help developers and business analysts to submit

services as tasks and chain them in order to create composite services. The architecture of

SOS is straightforward and is composed by the following components:

The editor – Web-based component with a GUI for the submission, chaining and generation

of composite services.

The engine – client component responsible for the orchestration of the composite service.

3.1 The editor

The editor is a Web-based component for the submission of tasks and their aggregation in

order to obtain a composite service. The next section will detail the main aspects of the

editor, more precisely, the GUI component, the task schema and the service manifest.

3.1.1 The GUI component

The SOS editor is a Web-based component, based on HTML5 Canvas and D3.js8, that will

help users in the submission and aggregation of tasks. The final result is a new composite

service as a SOS manifest that can be stored in the cloud or saved in the user’s computer. A

user can perform the following operations in the editor:

Submit a new task.

Create a new composite service (by aggregating tasks).

Share and grade tasks and services.

5 Link: https://ifttt.com/discover.
6 Link: https://zapier.com/.
7 Link: https://flow.microsoft.com/pt-pt/.
8 Link: https://d3js.org/.

SLATE 2017

13:4 SOS – Simple Orchestration of Services

After the registration and, before any submission, developers can search for desirable

tasks using tags. For instance, if we want to use a service for weather consumption, we insert

the tag “weather” and the editor shows all the tasks with the related tag. If no services are

returned, the developer can submit a new task. The submission of a task can be performed

interacting with the GUI component or by submitting a valid JSON document.

After the selection/submission of a task, business analysts can aggregate new ones in

order to compose a service. The aggregation of two tasks (for instance, Task A and Task B)

is only possible if the type of the response of Task A complies with one of the types of the

request of Task B. Outside of this rule are the initial and the final tasks. In the end, we will

have a composite service as a SOS service manifest that can be stored in the private cloud of

the user or downloaded for its computer.

Other feature of the editor is the capacity for sharing and grading tasks. This feature will

allow a user to share a previously created tasks in the public space of the SOS community.

With the grade feature, developers could score a given task taken into account the experience

that they have with it. This grading will influence the results list after searching.

3.1.2 The Task schema

Developers should create a task as a JSON document. In order to submit a new task,

developers should comply with the SOS official task schema formalized by the following

JSON Schema:

Listing 1 SOS schema for a task.

{

" $schema ": "http :// json - schema .org/draft -04/ schema #",

description : "A schema to formalize a SOS task",

type: " object ",

properties : {

id: { description : "task identifier ", type: " integer " },

tags: { type: "array", items: {type: " string "},

minItems : 1, uniqueItems : true },

placeholders : { description : " Dynamic values in the request ",

type: "array", items: {type: " string "},

uniqueItems : true },

endpoint : { description : "Task endpoint ", type: " string " },

request : { description : "The request (template with placeholders)",

type: " object " },

pathQueryResponse : { description : " Queries for the response ",

type: "array", items: {type: " string "} } },

required : ["id", "tags", " endpoint ", " pathQueryResponse "]

}

Using schemata is always a good approach for validating client-submitted data, specially

with the absence of a GUI interface. A JSON Schema has several purposes, one of which is

JSON instance validation. The JSON schema is composed by six important elements that

must be included in a SOS task instance:

id – is a numeric value that uniquely identifies a task;

tags – is an array with keywords that characterise the task. Their inclusion is crucial for

the task discovery process;

placeholders – specifies places in the request where substitution may take place;

R. Queirós and A. Simões 13:5

endpoint – the task URL endpoint;

request – a request template sent to the task implementer. The template can include

placeholders that will be changed automatically by the previous task response in the

chain or, manually, through the client API;

pathQueryResponse – a set of queries executed against the task implementer response in

order to obtain specific results. These results can be used as input for the following tasks.

One final note for the description property. This property can serve multiple purposes, such

as, to assist users with the editor GUI operations and to automatically generate the API

code documentation.

As an example, the next code shows the JSON document for the Ipify service9. This

service allows to get your public IP address programmatically.

Listing 2 Task instance for Ipify service.

{

"id": 1,

"tags ": ["ip", " machine "],

" placeholders ": [" json "],

" endpoint ": "https :// api.ipify.org? format =$1",

" request ": {},

" pathQueryResponse ": ["ip"]

}

The JSON document for the Ipify service is very simple. We included two strings for the

tags property. The property placeholders is fulfilled with one value which will be used by

default. However this default value will only be used if the developer does not associate

another value through the client API. A placeholder is marked with a sequential number

preceded by an $. In this example, there isn’t any request message to send to the service

implementer, thus the request property is empty. Finally, the pathQueryResponse defines

one query to be performed in the task response: {”ip” : ”98.207.254.136”}. The value of this

property adheres to the public specification json-query10. After submitting a task as a JSON

document, it is validated through a validator. For the validation process, the editor uses

the jsonschema validator11 for Node.js. The validator uses the previous JSON schema and

produces a result. The following code validates a specific submitted task instance:

Listing 3 SOS schema for a task.

var Validator = require (’jsonschema ’). Validator ;

var v = new Validator ();

v. addSchema (mainSchema , ’/ SOSTaskSchema ’);

var result = v. validate (myInstance , mainSchema);

if(result .valid === true) { // actions for successful validation }

else { // iterate result . errors }

In case of validation errors, they will be appended to the result.errors array which also

contains the success flag result.valid.

9 Link: https://api.ipify.org?format=json.
10 Link: https://github.com/mmckegg/json-query
11 Link: https://github.com/tdegrunt/jsonschema.

SLATE 2017

13:6 SOS – Simple Orchestration of Services

Table 1 API functions of the SOS engine.

Function Description

SOService SOService.createService(Url manifest) Creates a new service based on a SOS

manifest

SOService.start() Init the service

Task SOService.getCurrenatTask() Gets the current task

List<PlaceHolder> task.getPlaceholders() Obtains the placeholders defined for the

current task

PlaceHolder.setValue(int index, Object value) Assigns a value for a specific placeholder

Object task.run() Run a specific task

Object SOService.executeAll() Execute all tasks automatically and re-

turns the response object of the last task

3.1.3 The SOS manifest

The aggregation of tasks should be done through the GUI component (using drag-and-drop).

The aggregation of two tasks should fail if the tasks are not eligible for pairing. The eligibility

is granted only if the two tasks (for instance, Task A and Task B) have response and request

types similar. In other words, we cannot pair task A that returns a date with task B that

are expecting an integer as input.

After the chaining process, the editor will produce a manifest (a new JSON document)

with all the selected task instances included. The manifest structure is very simple and can

be accessed by the SOS engine through an URL endpoint or with a local reference.

3.2 The engine

The engine is a software component that acts as the orchestrator in the SOS realm. The main

goal of the engine is to manage the execution flow of the service and to free the developer of

the need to handle HTTP clients and parsing request and response messages.

In practical terms, the engine receives a SOS manifest (from a local reference or a cloud

location), maps the JSON data to a set of objects and iterates over them. At the same time,

it provides a simple API so the developer can manipulate all the tasks in the composite

service. In Table 1, we present some of the API functions of the SOS engine.

The engine support two run modes:

Automatic mode – executes all the tasks automatically, picking the response of the

current task and inject it in the request of the following task. In the end, it returns

the response of the last task. In order to trigger this mode, the developer must use the

executeAll method;

Iterative mode – performs one task at a time. For each task, the developer can inject

values to map with placeholders. Use this mode when the inputs of the app users are

crucial for the flow of the service. In order to trigger this mode, the developer must use

the run method of the specific task, and then, use the setValue method of the PlaceHolder

object to inject new values from the user’s input;

The engine uses the Fuel library12 as the HTTP client. In short, with Fuel we can

make HTTP GET requests to specific endpoints and use the responseString() method to

12 Link: https://github.com/openstack/fuel-library.

R. Queirós and A. Simões 13:7

asynchronously get the responses. At the time of writing, a Java binding implementation of

the engine is being created and can be used, in Android platforms (for instance), as a Gradle

dependency.

4 Case Study: a Photo App

In this section we briefly detail a Photo mobile app as a case study for the SOS tool. The

main goal of the app is to allow the user to take a photo and, automatically, receive a

description of the photographed object. In order to accomplish these requirements we need

three services: (1) a service to analyse an image and get the name of the photographed

object; (2) a service that translate the given name to another language (e.g. Portuguese);

(3) a service that takes the translated name and returns its definition.

After some research, we found three services to address these requirements, namely:

Google Cloud Vision13, Google Cloud Translation14 and Dicionario-Aberto15 services. The

first two are part of the Google Cloud Machine Learning services that provides fast, large

scale and easy access to machine learning services. The last one consists of a project with

more than 100,000 entries of the Portuguese dictionary providing a RESTful “user-friendly”

API which returns results in XML and JSON formats.

The first step was the submission of each service as a task in the Editor. In this case, we

need to create a JSON document that complies with the JSON schema previously described.

For reasons of compactness and readability, we only expose the JSON instance for the first

service, the Cloud Vision service.

Listing 4 Task instance for Google Cloud Vision API.

{

"id ": 1,

"tags ": [" vision ", "image manipulation "],

" placeholders ": [" DEFAULT_KEY ", "<BASE64 - ENCODED IMAGE DATA >"],

" endpoint ": "https :// vision . googleapis .com/ images : annotate ?key=$1",

" request ": {

{" requests ": [{

"image ": {" content ": $2},

" features ": [{" type ": " LABEL_DETECTION "}]

}]}

},

" pathQueryResponse ": " responses / labelAnnotations [0]/ description "

}

The request property of this task deserves an explanation. In order to send data to the

API, one should create an HTTP POST request. The body of the request must be a JSON

document containing the Base64-encoded image data. For label detection, the document

must also have a features array containing the value LABEL_DETECTION. When we use

the label detection feature, the Vision API returns a JSON document containing labels.

Along with each label, we also get a score specifying how accurate the label is. In this case,

we pick the first label since it will be the most accurate.

13 Link: https://cloud.google.com/vision/.
14 Link: https://cloud.google.com/translate/.
15 Link: http://dicionario-aberto.net.

SLATE 2017

13:8 SOS – Simple Orchestration of Services

After all the tasks submitted, the business analyst can select the tasks and create a

composite service. The SOS Editor will generate a cloud endpoint for the manifest. Then,

the developer, using the SOS library, can load the manifest through the engine API and

iterate all over the tasks of the composite service. In this example, the developer must inject

the Vision API key (previously obtained) and a Base64 encoded string based on the photo

taken. The following code shows how to handle the engine API in order to inject user’s value

in tasks’ placeholders and to manage the execution flow of the composite service.

Listing 5 SOS engine execution flow.

Process process = SOS. createProcess (" http :// sos.com/ manifests /123)

ArrayList < PlaceHolder > placeHolders = new ArrayList < PlaceHolder >();

placeHolders .get (0). setValue (1, VisionApiKey);

placeHolders .get (1). setValue (2, base64Data);

process . getCurrentTask (). run ();

In short, the user takes a photo. Then, the generated Base64 encoded string is used as input

for the Cloud Vision service. This service returns a label that represents the photographed

object. Then, the label is translated using the Translation service. With the label translated,

we use the last service to obtain a definition of the label. This label is presented in a Snackbar

GUI component in the bottom of the device screen.

5 Conclusions

In this paper we present SOS as a tool for service composition. The main idea is to use an

intelligent Web editor to aggregate small services as tasks and package them in a composite

service. These composite services can be loaded in an engine library that will manage the

execution flow of the service and abstract the developer of all the bureaucratic aspects related

to HTTP messaging management.

The main contributions of this work is the JSON schema to describe a task and the a

client API that will be exposed by a service engine.

As future work we intend to create a prototype by choosing a specific domain and by

implementing all these components. In the editor we intend to maintain it simple (to justify

its name), but the inclusion of conditional and cyclic blocks are being considered.

References

1 Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. BPEL4Chor: extending

BPEL for modeling choreographies. In International Conference on Web Services, 2007.

2 Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based analysis of ob-

ligations in web service choreography. In Advanced Int’ Conference on Telecommunications

and Int’ Conference on Internet and Web Applications and Services, page 149, 2006.

3 Yang Hongli, Zhao Xiangpeng, Cai Chao, , and Qiu Zongyan. Exploring the connection

of choreography and orchestration with exception handling and finalization/compensation.

In John Derrick and Jüri Vain, editors, Formal Techniques for Networked and Distributed

Systems, pages 81–96, 2007.

4 Ashley McNeile. Protocol contracts with application to choreographed multiparty collab-

orations. Service Oriented Computing and Applications, 4(2):109–136, 2010.

5 Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, and Arthur ter Hofstede. Let’s

dance: A language for service behavior modeling. In Robert Meersman and Zahir Tari,

editors, On the Move to Meaningful Internet Systems, pages 145–162, 2006.

	Introduction
	Services Composition
	Orchestration vs. Choreography
	Related work

	SOS – Simple Orchestration of Services
	The editor
	The GUI component
	The Task schema
	The SOS manifest

	The engine

	Case Study: a Photo App
	Conclusions

