35

A Textual Rewriting system for NLP
José Joao Dias de Almeida, Alberto Simoes

Universidade Do Minho Largo do Pago 4704-553 Braga-Portugal
{jj, ambs } @di.uminho.pt

Abstract

In this document we describe the use of Text::RewriteRules in several tasks related to Speech.
1.Introduction

In this document we will present a textual rewriting system tool - Text::RewriteRules[3] - and discuss its use for
several tasks related to Natural Language Processing specially for tasks related to TTS.

Some of the examples presented are included in the tool Lingua::PT::Speaker[4,5] - a Perl module that
implements a TTS for Mbrola[1]. During the presentation, a demonstration of Portuguese synthesis with
Lingua::PT::Speaker will be done. Both Text::RewriteRules and Lingua::PT::Speaker are available from
CPANI9].

In order to completely understand the examples, some knowledge of Perl programming language is needed. In
order to understand the rules, knowledge of regular expression is enough (see also). Also, some knowledge of
SAMPA[2] phonetic alphabet can help understanding rules.

We will start with a description of the rewriting system (section). After that, we will take a rewriting system by
example approach (sections and).

2.Short presentation of Text::RewriteRules

Text::RewriteRules is a Perl embedded Domain Specific Language that helps writing rules to process text.
Basically, Text::RewriteRules is used to include rule-sets in a Perl program:
e each set of rules generates an independent Perl function;
e each rewriting step is a substitution:
e cither a Perl regular expression substitution;
e or a substitution by the result of an expression.

2.1 "Hello world"-like example
The following example performs the expansion of some informal English constructions:
use Text::RewriteRules;

RULES formalizer
don't==>do not
doesn't==>does not
ENDRULES

while(<>) {
print formalizer($_)
}

2.2 Rule types

Text::RewriteRules support several types of rules. The most relevant are:
¢ simple string substitution,

regexp ==> substitution string

36

e conditional substitutions,

regexp ==> substitution string !! condition

¢ rules with code evaluation (with optional conditions),

regexp =e=> Perl expression
regexp =e=> Perl expression !! condition

¢ initialization rules (begin rule),

=b=> Perl initialization statement

2.3 Basic rewriting algorithms
There are two kind of rule-set:
¢ Point fix rewriting system (RULES f ... ENDRULES), that performs all possible substitutions until no
rule can be applied;
¢ Sliding rewriting system (RULES/m f ... ENDRULES) that performs substitutions at a cursor position,
that slides from the beginning to the end of the text.

3.Text::RewriteRules by example

3.1 PT Syllable

In the following example we define three rewriting systems:
¢ divide - separate words in syllable (regato - re | ga | to)
¢ syllableaccent - marks the tonic syllable (re | galto - re | "ga | to)
¢ vowelaccent - marks the tonic vowel (re | "ga | to - re | ga: | to)

$v = qr{[acioudéionaacacodaciciyw] }i; ## vowels

$c = gr{[bcgdfghjklminpqrstvwyxz] }i; ## consonant

$f = qr{(?:[¢dfgjkqtv]issirri[nlcs]hlbslcc) }i; ## strong consonant
$ac = qr{[4éi61avaés] }i; ## accents

@br = qw{sl sm sn sc rn bec Ir be bd bj bp pt pc dj p¢ zm tp};

while(<>){
s/(\w+)/vowelaccent(syllableaccent(divide($1)))/ge; }

RULES/i divide

($V)($c)($0)($v)==>$1$21$3$4!! $br{"$2$3"}

BV)($)($O)([Ir])==>$1$21$3$4!! $br{"$2$3"}

GVEHIND==>$11$2

(.[belnprsx])($H)(?![1])==>$1I$2

($v)([bclmnprsxzh]$v)==>$11$2
(\Ww)([Imnrsx])([belmnprszx])($v)==>$1$21$3$4!!"$2$3" ne "ss" && "$2$3" ne 1r
($vI[Imnrsx])([bep][Ir]$v)==>$11$2

BV)($c)($c)($v)==>$11$2$3%4

([aD(i[ru])==>$11$2 ## quebra de ditongos / tritongos
([ioeé])([aoe])==>$11$2

u(ailou)==>ul$1

(["qglu)(eiliulirl$ac)==>$11$2

([aeio])($ac)==>$1I$2

([fa8])($v)==>$11$2

ENDRULES

RULES/i syllableaccent ## mark the tonic syllable
"=last=> ## leave if we have a tonic syllable
(\w*$ac)==>"$1 ## mark a syllable when it has accent character

(\w*([zIr][iu]s?))$==>"$1 ## mark last syllable if ...
(w+\\w+)$==>"$1

Mw+$)==>"$1

ENDRULES

RULES/i vowelaccent ## mark the tonic vowel in the tonic syllable
:($ac)==>%1:

"(\w*2($vi[yw]))==>$1:

([gq]w):($vi[yw])==>$1$2:

"==>

:=last=>

ENDRULES

3.2 Numbers to words

The following rules convert numbers to words.

Yofixnum=(0=> "zero", 1=> "um", 2=> "dois", 3=> "trés",...
10=> "dez", 11=> "onze", 12=> "doze", ...
20=> "vinte", 30=> "trinta", 40=> "quarenta", ...
100=> "cem", 200=> "duzentos", 300=> "trezentos",...
1000=> "mil", 1000000=> "um milhdo");

RULES num2words
(\d+)[Ee](-\d+)==>$1 vezes 10 levantado a $2 ## 12E-24 scientific

-(\d+)==>menos $1 ##-34 negatives
(\d+)\s*\%==>$1 por cento ## 12% percentual
(\d+\.(\d{1,3})\b==>$1 ponto $2 ##12.21 decimals
(\d+)\.(\d+)==>$1 ponto __digits$2. ## 12.00324

__digits(\d+)\.=e=>join(" ",split(//,$1)) ## 12.00324
\b(\d+)\b==>$fixnum{$1}!!defined $fixnum{$1} ## base (0 11 100 1000)
(\d+)(000000)\b==>$1 milhdes ## 7000000

(\d+)(000)(\d{3})==>$1 milhdo e $3!! $1 == 1 ## 1000123
(\d+H)(\d{3})(000)==>$1 milhdo e $2 mil!! $1 == 1 ## 1123000

(\d+)(\d{6})==>$1 milhdo, $2!! $1==1##1123123
(\d+)(000)(\d{3})==>$1 milhoes e $3 ## 7000123
(\d+)(\d{3})(000)==>$1 milhdes e $2 mil ## 7123000
(\d+)(\d{6})==>$1 milhdes, $2 ## 7123123
(\d+)(000)\b==>$1 mil

(\d+)0(\d{2})==>mil e $2!! $1==1
(\d+)(\d00)==>mil e $2!! $1=1
(\d+)(\d{3})==>mil $2!! $1==1

(\d+)0(\d{2})==>$1 mil e $2
(\d+)(\d00)==>$1 mil e $2
(\d+)(\d{3})==>$1 mil, $2

1(\d\d)==>cento e¢ $1
0(\d\d)==>$1
(\d)(\d\d)==>${1}00 e $2
0(\d)==>$1
\)(\)==>${1}0e $2
0$==>zero

37

38
0==>
ENDRULES
num2words("123.12"); # returns "cento e vinte e trés ponto doze"

Each set of rules generate a Perl function. As standard functions, these can be composed. For example, in order
to read a telephone number we can split the number and convert it to words:

RULES telefone

{3H(d{3})(\d{3})=e=>num2words("$1 $2 $3")

ENDRULES

4.Lingua::PT::Speaker: a TTS with Text::RewriteRules

A simple TTS was built by composition of several textual rewriting systems[5]. The following

phrase sampal

for nonwords(nonword2word) C_ adjacentewords(join("/ words)
) J) J
words sampaZ2

for word(vowelaccent) add prosody
Y Y
words-tonic sampa3

for word{word2sampa)
Y Y
sampal mbrola

diagram‘l describes the rewriting systems pipeline used to transform a text into a Mbrola text:

In [8] we can find several detailed algoritms regarding similar problems.

1 This is in fact a simplified version - some blocks like the nonAcentuatedWords dictionary and
the exception dictionary are not presented in order to make the text less complex.

Propor 2008 Special Session: Applications of Portuguese Speech and Language Technologies, September 10, 2008, Curia, Portugal

4.1 NonWords to words

39

In order to turn a real text into speech there is a large variety of situations to take care. For instance,

we need to know how to read: numerals (see sec 3.2), ordinals, acronyms, emails, urls , math

notation, etc.

4.1.1 Acronyms

AN "o An

Yoletra=(a =>"4a", b=>"b&", c =>"cé&", h=>"agd", k => "kapa"...);

RULES/m sigla
([a-z])=e=> $letra{$1}
ENDRULES

4.1.2 Reading emails and URL

The following set of rules is used to read URL and Emails:
RULES/m email
\.==> ponto
\@==> arroba
:VV==> doispontos barra barra
:==> doispontos
(net)\b==> néte
(www)\b==> dablidablidabliw
(http)\b==> gatétépé
(com)\b==> c6me
(org)\b==> org
([a-zA-Z]{1,3}?)\b=e=> sigla($1)
(AD\b==>$1
ENDRULES

jj@di.uminho.pt jota jota arroba dé i ponto uminho ponto pé té

4.1.3 Reading Math expressions

In the following example we present some rules used in the task of translating math to text.

This example is not complete.
RULES/m math
\(\s*(\d+)\s*¥\)==> $1
\(\s*(\w)\s*\)==> $letra{$1}
\(==> abre ,
\)==>, fecha

([a-z])(?=\(\s*(\w+)\s*\))==> $letra{$1} de
([a-z])(?=2\(\sF\WH\s*(\s¥\w+\s*)*\))==> $letra{$1} de,
\d+H)(?2=\s¥\O)==> $1 vezes

(\d+)V(\d+)==> $1 sobre $2

(Ww+)V(\d+)==> $letra{$1} sobre $2
(\d+)V(\w+)==> $1 sobre $letra{$2}
(W+H)V(\w+)==> $letra{$1} sobre $letra{$2}

([a-z])\s+2\b==> $letra{$1} ao quadrado
([a-z])\s+3\b==> $letra{$1} ao cubo
([a-z])\s+(\d)\b==> $letra{$1} a $2*
Ws*#2\b==> $letra{$1} ao quadrado

40

Ws*3\b==> $letra{$1} ao cubo
Ws*(\d)\b==> $letra{$1} a $2*
Ws*(\d+)\b==> $letra{$1} elevado a $2

(\d+)\s+2\b==> $1 ao quadrado
(\d+)\s+3\b==> $1 ao cubo
(\d-+)\s+(\d)\b==> $1 a $2*

sqrt\b==> reiis de

(MW\s]+)==> $mat{$1} !! defined $mat{$1}
([a-z])\b==> S$letra{$1}

log\b==>logaritmo de
exp\b==>exponencial de

cos\b==>cosseno de
s[ie]n\b==>seno de
mod\b==>modulo de
rand\d==>randome de
([a-zA-Z]+)==>$1

ENDRULES

math("f(x)=4x 2 + exp(x)") returns
éfe de xis igual a quatro vezes xis ao quadrado, mais exponencial de xis

4.2 Words to SAMPA

Some trivial rules to convert from our alphabet to SAMPA:
rr==>R #Hr
Ar==>R
([nlsDr==>$1R

ass==>06ss ##s
s$==>S
($vogal)s($vogal)==>$12$2
e$==—>@ #ite
Ah==> ##h

4.3 Adjacent words

The following set of rules is used to deal with adjacent words interference. The frontiers
between words is represented by '/ character.

(ela)/\1==>/51 ## a/dgua -> /&qua
6/6(2!~)==>/a ## port6/6bert6 —-> port/abert6
6/a==>/a ## 6/agub -> /agub6

S/ ([a\@eA6i0ulE])==>2z/$1 ## 6S/agubs -> 6z/agu6s
\Q/ ([\Qeaui6])==>/51 ## QStQ/ursu -> @St/ursu

Propor 2008 Special Session: Applications of Portuguese Speech and Language Technologies, September 10, 2008, Curia, Portugal

41

4.4 Prosody

We will not present the prosody rewriting system. In the tool Lingua::PT::Speaker the strategy used is to add
simple prosodic markers that indicates pauses, duration and frequency variations. The markers are replaced by

specific Mbrola syntax in the MBrolaGenerator rewriting systems.
4.5 Local Accent

The following example makes a transformation of phonemes in order to naively simulate the voice traditionally
associated with Viseu[6].
These rules are presented in order to show that is possible and easy to model and discuss certain phonetic
phenomena.

RULES/m viseu

v==>b
s==>8S
z==>7
S==>7
ENDRULES

vive 6 sidad@ dQ@ vizeu -> bib6 6 Sidad@ d@ BiZeu

5.Conclusion

We believe that Text::RewriteRules transfers algorithmic complexity to a set of rules, that are simpler to read
and constitute a way for discussion and contribution of improvements.

Several other writing systems have been tested and are currently in use.
References

1. The MBROLA Project: Towards a Freely Available Multilingual Speech Synthesizer.
http://tcts.fpms.ac.be/synthesis/mbrola.html.

2. SAMPA: computer readable phonetic alphabet.
http://www.phon.ucl.ac.uk/home/sampa/home.htm.

3. J.J. Almeida and Alberto Simoes. Text::RewriteRules - a system to rewrite text using regexp-based
rules. (Perl module) Text::RewriteRules, CPAN - Comprehensive Perl Archive Network, 2007.

4. JJ. Almeida and Alberto Simoes. Lingua::PT::Speaker - perl extension for text to speech of
portuguese. (Perl module) Lingua::PT::Speaker, CPAN - Comprehensive Perl Archive Network, 2008.

5. JJ. Almeida and A. M. Simdes. Text to speech - a rewriting system approach. Procesamiento del
Lenguaje Natural, 27:247-255, Sep. 2001.

6. J.J. Almeida and Alberto Manuel Simdes. Gerag@o de voz com sotaque. In Actas do XVIII Encontro da
Associagdo Portuguesa de Linguistica, Porto 2002, 2003.

7. Alan W Black and Kevin A. Lenzo. Building synthetic voices. Technical report, Language
Technologies Institute, Carnegie Mellon University, 2007.
http://www.festvox.org/festvox/festvox toc.html.

8. Daniela Braga. Algoritmos de PLN para conversdo texto-fala em Portugués. Tese de doutoramento,
Universidade da Corunha, 2008.

9. Andreas Koenig. CPAN - Comprehensive Perl Archive Network, 1995. http://www.perl.org.

Propor 2008 Special Session: Applications of Portuguese Speech and Language Technologies, September 10, 2008, Curia, Portugal

42

A Regular expressions

\'s space (white space, tab) [\t\n]
\w letters, digits _ [a—-zA-70-9_&éiducg...]
\d digit [0-9]
\b word boundary

N _ at the beggining of

_$ _ at the end of

_* 0 or more repetitions of _

_+ 1 or more repetitions of _

_{8} 8 repetitions of _

_{2,8} between 2 and 8 repetitions of _
2 0 or 1 repetitions of _

(?2=_) _ positive lookahead

(2!_) _ negative lookahead

Propor 2008 Special Session: Applications of Portuguese Speech and Language Technologies, September 10, 2008, Curia, Portuga

