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Abstract 

In this document we describe the use of Text::RewriteRules in several tasks related to Speech.  

1.Introduction 

In this document we will present a textual rewriting system tool - Text::RewriteRules[3] - and discuss its use for 
several tasks related to Natural Language Processing specially for tasks related to TTS.  
Some of the examples presented are included in the tool Lingua::PT::Speaker[4,5] - a Perl module that 
implements a TTS for Mbrola[1]. During the presentation, a demonstration of Portuguese synthesis with 
Lingua::PT::Speaker will be done. Both Text::RewriteRules and Lingua::PT::Speaker are available from 
CPAN[9].  
In order to completely understand the examples, some knowledge of Perl programming language is needed. In 
order to understand the rules, knowledge of regular expression is enough (see also ). Also, some knowledge of 
SAMPA[2] phonetic alphabet can help understanding rules.  
We will start with a description of the rewriting system (section). After that, we will take a rewriting system by 

example approach (sections and ).  

2.Short presentation of Text::RewriteRules  

Text::RewriteRules is a Perl embedded Domain Specific Language that helps writing rules to process text. 
Basically, Text::RewriteRules is used to include rule-sets in a Perl program:  

• each set of rules generates an independent Perl function;  
• each rewriting step is a substitution:  

• either a Perl regular expression substitution;  
• or a substitution by the result of an expression.  

2.1 "Hello world"-like example 
The following example performs the expansion of some informal English constructions:  
  use Text::RewriteRules; 
 
  RULES formalizer 
  don't==>do not 
  doesn't==>does not 
  ENDRULES 
 
  while(<>) { 
     print formalizer($_) 
  } 
 

2.2 Rule types 

Text::RewriteRules support several types of rules. The most relevant are:  
• simple string substitution,  

  regexp ==> substitution string 
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• conditional substitutions,  

  regexp ==> substitution string !! condition 
 

• rules with code evaluation (with optional conditions),  

  regexp =e=> Perl expression 
  regexp =e=> Perl expression !! condition 
 

• initialization rules (begin rule),  

  =b=> Perl initialization statement 
 

2.3 Basic rewriting algorithms 
There are two kind of rule-set:  

• Point fix rewriting system (RULES f ... ENDRULES), that performs all possible substitutions until no 
rule can be applied;  

• Sliding rewriting system (RULES/m f ... ENDRULES) that performs substitutions at a cursor position, 
that slides from the beginning to the end of the text.  

3.Text::RewriteRules by example  

3.1 PT Syllable 

In the following example we define three rewriting systems:  
• divide - separate words in syllable (regato - re | ga | to)  
• syllableaccent - marks the tonic syllable (re | ga | to - re | "ga | to)  
• vowelaccent - marks the tonic vowel (re | "ga | to - re | ga: | to)  

  $v  = qr{[aeiouáéíóúàãõâêôäëïöüyw]}i;            ## vowels 
  $c  = qr{[bcçdfghjklmñnpqrstvwyxz]}i;            ## consonant 
  $f  = qr{(?:[çdfgjkqtv]|ss|rr|[nlcs]h|bs|cc)}i;  ## strong consonant 
  $ac = qr{[áéíóúãõâêô]}i;                         ## accents 
  @br = qw{sl sm sn sc rn bc lr bc bd bj bp pt pc dj pç zm tp}; 
 
  while(<>){ 
    s/(\w+)/vowelaccent(syllableaccent(divide($1)))/ge; } 
 
  RULES/i divide 
  ($v)($c)($c)($v)==>$1$2|$3$4!! $br{"$2$3"} 
  ($v)($c)($c)([lr])==>$1$2|$3$4!! $br{"$2$3"} 
  ($v)($f)(?![|])==>$1|$2 
  (.[bclnprsx])($f)(?![|])==>$1|$2 
  ($v)([bclmnprsxzh]$v)==>$1|$2 
  (\w)([lmnrsx])([bclmnprszx])($v)==>$1$2|$3$4!!"$2$3" ne "ss" && "$2$3" ne rr 
  ($v|[lmnrsx])([bcp][lr]$v)==>$1|$2 
  ($v)($c)($c)($v)==>$1|$2$3$4 
 
  ([a])(i[ru])==>$1|$2               ##  quebra de ditongos / tritongos 
  ([ioeê])([aoe])==>$1|$2 
  u(ai|ou)==>u|$1 
  ([^qg]u)(ei|iu|ir|$ac)==>$1|$2 
  ([aeio])($ac)==>$1|$2 
  ([íúô])($v)==>$1|$2 
  ENDRULES 
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  RULES/i syllableaccent             ##   mark the tonic syllable 
  "=last=>                           ## leave if we have a  tonic syllable 
  (\w*$ac)==>"$1                     ## mark a syllable when it has accent character 
  (\w*([zlr]|[iu]s?))$==>"$1         ## mark last syllable if ... 
  (\w+\|\w+)$==>"$1                  
  (^\w+$)==>"$1 
  ENDRULES 
 
  RULES/i vowelaccent                ## mark the tonic vowel in the tonic syllable 
  :($ac)==>$1: 
  "(\w*?($v|[yw]))==>$1: 
  ([gq]u):($v|[yw])==>$1$2: 
  "==> 
  :=last=> 
  ENDRULES 
 

3.2 Numbers to words  

The following rules convert numbers to words.  
  %fixnum=( 0=> "zero", 1=> "um", 2=> "dois", 3=> "três",... 
            10=> "dez", 11=> "onze", 12=> "doze", ... 
            20=> "vinte", 30=> "trinta", 40=> "quarenta", ... 
            100=> "cem", 200=> "duzentos", 300=> "trezentos",... 
            1000=> "mil", 1000000=> "um milhão"); 
 
  RULES num2words 
  (\d+)[Ee](-?\d+)==>$1 vezes 10 levantado a $2    ## 12E-24    scientific  
  -(\d+)==>menos $1                                ## -34       negatives 
  (\d+)\s*\%==>$1 por cento                        ## 12%       percentual 
   
  (\d+)\.(\d{1,3})\b==>$1 ponto $2                 ## 12.21     decimals 
  (\d+)\.(\d+)==>$1 ponto __digits$2.              ## 12.00324 
  __digits(\d+)\.=e=>join(" ",split(//,$1))        ## 12.00324 
   
  \b(\d+)\b==>$fixnum{$1}!!defined $fixnum{$1}     ## base (0 11 100 1000) 
   
  (\d+)(000000)\b==>$1 milhões                     ## 7000000 
  (\d+)(000)(\d{3})==>$1 milhão e $3!!     $1 == 1 ## 1000123 
  (\d+)(\d{3})(000)==>$1 milhão e $2 mil!! $1 == 1 ## 1123000 
  (\d+)(\d{6})==>$1 milhão, $2!!           $1 == 1 ## 1123123 
  (\d+)(000)(\d{3})==>$1 milhões e $3              ## 7000123 
  (\d+)(\d{3})(000)==>$1 milhões e $2 mil          ## 7123000 
  (\d+)(\d{6})==>$1 milhões, $2                    ## 7123123 
   
  (\d+)(000)\b==>$1 mil 
  (\d+)0(\d{2})==>mil e $2!!               $1 == 1 
  (\d+)(\d00)==>mil e $2!!                 $1 == 1 
  (\d+)(\d{3})==>mil $2!!                  $1 == 1 
  (\d+)0(\d{2})==>$1 mil e $2 
  (\d+)(\d00)==>$1 mil e $2 
  (\d+)(\d{3})==>$1 mil, $2 
   
  1(\d\d)==>cento e $1 
  0(\d\d)==>$1 
  (\d)(\d\d)==>${1}00 e $2 
  0(\d)==>$1 
  (\d)(\d)==>${1}0 e $2 
  0$==>zero 
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  0==> 
  ENDRULES 
   
  ### num2words("123.12"); # returns "cento e vinte e três ponto doze" 
 

Each set of rules generate a Perl function. As standard functions, these can be composed. For example, in order 
to read a telephone number we can split the number and convert it to words:  

  RULES telefone 
  (\d{3})(\d{3})(\d{3})=e=>num2words("$1 $2 $3") 
  ENDRULES 
 

4.Lingua::PT::Speaker: a TTS with Text::RewriteRules  

A simple TTS was built by composition of several textual rewriting systems[5]. The following 

diagram
11 describes the rewriting systems pipeline used to transform a text into a Mbrola text:  

 
In [8] we can find several detailed algoritms regarding similar problems.  

                                                           
1 This is in fact a simplified version - some blocks like the nonAcentuatedWords dictionary and 

the exception dictionary are not presented in order to make the text less complex.  
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4.1 NonWords to words 

In order to turn a real text into speech there is a large variety of situations to take care. For instance, 

we need to know how to read: numerals (see sec 3.2), ordinals, acronyms, emails, urls , math 
notation, etc.  

4.1.1 Acronyms 

  %letra=( a => "á", b => "bê", c =>"cê", h => "agá", k => "kapa"...); 
 
  RULES/m sigla 
  ([a-z])=e=> $letra{$1} 
  ENDRULES 
 

4.1.2 Reading emails and URL 

The following set of rules is used to read URL and Emails:  
  RULES/m email 
  \.==> ponto 
  \@==> arroba 
  :\/\/==> doispontos barra barra 
  :==> doispontos 
  (net)\b==> néte 
  (www)\b==> dablidablidabliw 
  (http)\b==> gátêtêpê 
  (com)\b==> cóme 
  (org)\b==> órg 
  ([a-zA-Z]{1,3}?)\b=e=> sigla($1) 
  (.+?)\b==>$1 
  ENDRULES 
 
  ### jj@di.uminho.pt  jota jota arroba dê i ponto uminho ponto pê tê 
 

4.1.3 Reading Math expressions 

In the following example we present some rules used in the task of translating math to text. 
This example is not complete.  

RULES/m math 
  \(\s*(\d+)\s*\)==> $1  
  \(\s*(\w)\s*\)==> $letra{$1}  
  \(==> abre ,  
  \)==> , fecha  
   
  ([a-z])(?=\(\s*(\w+)\s*\))==> $letra{$1} de 
  ([a-z])(?=\(\s*\w+\s*(,\s*\w+\s*)*\))==> $letra{$1} de, 
  (\d+)(?=\s*\()==> $1 vezes 
   
  (\d+)\/(\d+)==> $1 sobre $2 
  (\w+)\/(\d+)==> $letra{$1} sobre $2 
  (\d+)\/(\w+)==> $1 sobre $letra{$2} 
  (\w+)\/(\w+)==> $letra{$1} sobre $letra{$2} 
 
  ([a-z])\s+2\b==> $letra{$1} ao quadrado 
  ([a-z])\s+3\b==> $letra{$1} ao cubo 
  ([a-z])\s+(\d)\b==> $letra{$1} à $2ª 
  \^\s*2\b==> $letra{$1} ao quadrado 



40 
 

 



  \^\s*3\b==> $letra{$1} ao cubo 
  \^\s*(\d)\b==> $letra{$1} à $2ª 
  \^\s*(\d+)\b==> $letra{$1} elevado a $2 
   
  (\d+)\s+2\b==> $1 ao quadrado 
  (\d+)\s+3\b==> $1 ao cubo 
  (\d+)\s+(\d)\b==> $1 à $2ª 
   
  sqrt\b==> reiís de 
   
  ([^\w\s]+)==> $mat{$1} !! defined $mat{$1} 
  ([a-z])\b==> $letra{$1}  
 
  log\b==>logaritmo de  
  exp\b==>exponencial de  
 
  cos\b==>cosseno de 
  s[ie]n\b==>seno de 
  mod\b==>módulo de  
  rand\d==>randome de 
  ([a-zA-Z]+)==>$1 
 
ENDRULES 
 
  ### math("f(x)=4x 2 + exp(x)") returns 
  ###  éfe de xis igual a quatro vezes xis ao quadrado, mais exponencial de xis 
 

4.2 Words to SAMPA 

Some trivial rules to convert from our alphabet to SAMPA:  
  rr==>R                     ## r 
  ^r==>R                  
  ([nls])r==>$1R 
 
  ass==>6ss                  ## s 
  s$==>S 
  ($vogal)s($vogal)==>$1z$2 
 
  e$==>@                     ## e 
 
  ^h==>                      ## h 
 

4.3 Adjacent words  

The following set of rules is used to deal with adjacent words interference. The frontiers 
between words is represented by '/' character.  

  (e|a)/\1==>/$1              ## à/água        -> /água 

  6/6(?!~)==>/a               ## port6/6bert6  -> port/abert6 

  6/a==>/a                    ## 6/agu6        -> /agu6 

  S/([a\@eA6iouOE])==>z/$1    ## 6S/agu6S      -> 6z/agu6S 

  \@/([\@eaui6])==>/$1        ## @St@/ursu     -> @St/ursu 
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4.4 Prosody 

We will not present the prosody rewriting system. In the tool Lingua::PT::Speaker the strategy used is to add 
simple prosodic markers that indicates pauses, duration and frequency variations. The markers are replaced by 

specific Mbrola syntax in the MBrolaGenerator rewriting system.  

4.5 Local Accent 

The following example makes a transformation of phonemes in order to naively simulate the voice traditionally 
associated with Viseu[6].  
These rules are presented in order to show that is possible and easy to model and discuss certain phonetic 
phenomena.  
  RULES/m viseu 

 

  v==>b 

  s==>S 

  z==>Z 

  S==>Z 

 

  ENDRULES 

  ### viv6 6 sidad@ d@ vizeu -> bib6 6 Sidad@ d@ BiZeu 

 

5.Conclusion 

We believe that Text::RewriteRules transfers algorithmic complexity to a set of rules, that are simpler to read 
and constitute a way for discussion and contribution of improvements.  

Several other writing systems have been tested and are currently in use.  
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A Regular expressions  

  \s         space (white space, tab)  [ \t\n] 

  \w         letters, digits _         [a-zA-Z0-9_áéíóúç...] 

  \d         digit                     [0-9] 

  \b         word boundary 

  ^_         _ at the beggining of 

  _$         _ at the end of 

   

  _*         0 or more repetitions of _ 

  _+         1 or more repetitions of _ 

  _{8}       8 repetitions of _ 

  _{2,8}     between 2 and 8 repetitions of _ 

  _?         0 or 1 repetitions of _ 

   

  (?=_)      _ positive lookahead 

  (?!_)      _ negative lookahead 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


