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Abstract: Reinforcement Learning is one of the many machine learning paradigms. With no labelled
data, it is concerned with balancing the exploration and exploitation of an environment with one
or more agents present in it. Recently, many breakthroughs have been made in the creation of
these agents for video game machine learning development, especially in first-person shooters with
platforms such as ViZDoom, DeepMind Lab, and Unity’s ML-Agents. In this paper, we review
the state-of-the-art of creation of Reinforcement Learning agents for use in multiplayer deathmatch
first-person shooters. We selected various platforms, frameworks, and training architectures from
various papers and examined each of them, analysing their uses. We compared each platform and
training architecture, and then concluded whether machine learning agents can now face off against
humans and whether they make for better gameplay than traditional Artificial Intelligence. In the
end, we thought about future research and what researchers should keep in mind when exploring
and testing this area.

Keywords: reinforcement learning; deep learning; first-person shooter; bot; artificial intelligence

1. Introduction

Many recent breakthroughs have been made in the creation of Artificial Intelligence
(AI) agents powered by Reinforced Learning (RL). New platforms have made RL more
accessible, new algorithms have made trained agents more capable, and new training
architectures have created new ways to train those agents.

Video games have always been used as a benchmark for testing new AI techniques,
and as the years pass, more and more games are solved by AI algorithms, as is the case with
the classic games of Go [1], Chess [2], and Shogi [2]. RL has also proved to be developed
enough to also play 2D arcade games such as Breakout, Pong, and Space Invaders at a
human level [3], but it is still being developed when facing complex 3D environments.
However, it has been proven that it is possible to apply RL to a simplified first-person
shooter (FPS) game [4].

FPS are one of the more popular genres for developing RL agents in these 3D environ-
ments due to their nature of placing the camera on the agent’s perspective, thus facilitating
the use of Visual Recognition, and more closely mimicking what a real-life robot would
require when functioning in a real environment.

1.1. First-Person Shooter

First-person shooters are a sub-genre of action games that are played from the first-
person point of view, usually involving one or more ranged weapons, and allowing the
player to fully navigate a 3D environment. The major focus of games such as these is
usually combat, although they can also have narrative and puzzle elements. They allow the
player to freely control their character’s movement, aim, and shooting, often in fast-paced
and intense scenarios.
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Many of the games in this genre have a multiplayer component, where players can
play against each other or against AI-controlled opponents in various formats such as duels,
free-for-all, or team-based modes. Games in this genre include Doom (1993), Half-life (1998),
Halo (2001), and Call of Duty (2003), and this genre many times contains a multiplayer
element where various human players can play against each other or AI bots.

1.2. Purpose of the Review

The purpose of this review is to investigate the current state of the art of how RL is
used in the creation of FPS AI bots and look at the various platforms and methods that have
been used in recent years to create RL AI. Previously, there have been reviews conducted in
RL agents for video games in general [5], but not specifically on FPS. As there have been
multiple FPS papers in past years, it seems appropriate to focus only on them instead of
generalizing, as these games have specific mechanics.

In this review, four questions are proposed to be explored and answered:

• What platforms exist and what methods are being used to create RL AI bots in
FPS games?

• Which methods are currently the most effective at creating AI bots for better experiences?
• Can these AI bots rival and beat human players?
• Can RL-based AI bots yield better gameplay and be more enjoyable than traditional

AI bots?

The first question will be explored and answered during Section 4, where we will
expose the various platforms and methods that have been used in the past five years to
create RL AI bots. The other three questions will be answered in Section 5, where we will
cover each one and draw conclusions from the gathered information.

1.3. Document Organization

The sections will be structured as follows: Section 2 will describe the background
information necessary to understand the rest of the document. Section 3 will present the
research methods. Section 4 will expose the various frameworks, algorithms, training
architectures, and platforms in the form of the research results. Section 5 is the discussion
chapter where we compare results and answer the proposed questions. Finally, Section 6 is
where we conclude the review and look into future research and discuss potential ethical
issues in the development of ML for FPS games.

2. Background

In this section, the theoretical considerations required to understand the main paper
concepts are presented.

2.1. Machine Learning

The field of machine learning (ML) focuses on developing programs that learn how
to perform a task, as opposed to the traditional approach of developing programs with
hardcoded rules on how to perform a task. With ML techniques, a program can adapt to
changes in its input or output without the need for manual updates.

A good example of how ML thrives is in problems that are too complex for traditional
methods, such as the spam filter [6]. An ML program analyses words in emails flagged
as spam, finding patterns, and learning how to identify future spam mail. If the spam
filter was run through the traditional programming approach, the designers would have to
update the program each time the spam mail changed its patterns.

There are various types of ML paradigms, separated into categories by whether they
require human supervision or not, whether they can learn on the fly, and whether they
work by comparing new data points to previous data points, or by detecting patterns in the
training data to build a predictive model [6].
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2.2. Reinforcement Learning

RL is a subfield of machine learning that focuses on teaching an agent to make sequen-
tial decisions in an environment to maximize its long-term rewards. It is inspired by how
humans and animals learn through interaction with the world. RL places an agent in an
environment, carrying sensors to check its state, and gives it a set of actions that it can
perform, as seen in Figure 1. The agent then tries out those actions by trial-and-error so that
it can develop its control policy and maximize rewards based on its performed actions [7].

Algorithms 2023, 16, x FOR PEER REVIEW 3 of 20 
 

work by comparing new data points to previous data points, or by detecting patterns in 
the training data to build a predictive model [6]. 

2.2. Reinforcement Learning 
RL is a subfield of machine learning that focuses on teaching an agent to make se-

quential decisions in an environment to maximize its long-term rewards. It is inspired by 
how humans and animals learn through interaction with the world. RL places an agent in 
an environment, carrying sensors to check its state, and gives it a set of actions that it can 
perform, as seen in Figure 1. The agent then tries out those actions by trial-and-error so 
that it can develop its control policy and maximize rewards based on its performed actions 
[7]. 

 
Figure 1. How an agent interacts with the environment in RL. 

RL is different from both supervised and unsupervised learning, as it may not receive 
any pre-labelled data and it also is not trying to find a hidden structure, instead working 
its way to maximizing the reward value [8]. 

RL is made up of several components such as the agent, the environment, the actions, 
the policy, and the reward signal. There is also a deep version of RL, called Deep Rein-
forcement Learning. 

2.3. Deep Reinforcement Learning 
Deep Reinforcement Learning (DRL) is achieved by combining deep learning tech-

niques with RL. While RL considers the problem of an agent learning to make decisions 
by trial and error, DRL incorporates deep learning into the solution, which allows the 
input of large quantities of data, such as all the pixels in a frame, and still manages to 
decide which action to perform. In Figure 2, we can see how the added deep neural net-
work works with RL. 

 
Figure 2. How the DRL agent interacts with the environment. 

2.3.1. RL Agent 
The agent is the entity that is being trained on the environment, with various training 

agents contributing to constructing and refining the control policy. The agent monitors 
the state of the environment and performs actions. 

  

Figure 1. How an agent interacts with the environment in RL.

RL is different from both supervised and unsupervised learning, as it may not receive
any pre-labelled data and it also is not trying to find a hidden structure, instead working
its way to maximizing the reward value [8].

RL is made up of several components such as the agent, the environment, the ac-
tions, the policy, and the reward signal. There is also a deep version of RL, called Deep
Reinforcement Learning.

2.3. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is achieved by combining deep learning tech-
niques with RL. While RL considers the problem of an agent learning to make decisions by
trial and error, DRL incorporates deep learning into the solution, which allows the input of
large quantities of data, such as all the pixels in a frame, and still manages to decide which
action to perform. In Figure 2, we can see how the added deep neural network works
with RL.
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2.3.1. RL Agent

The agent is the entity that is being trained on the environment, with various training
agents contributing to constructing and refining the control policy. The agent monitors the
state of the environment and performs actions.
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2.3.2. RL Environment

The environment is the space that the agent is in and can interact with, and changes
according to the agent’s actions. It sends back feedback to the agent in the form of a
reward signal.

2.3.3. Actions

The actions are the choices available to the agent; The agent selects actions based on
the control policy, which influences the environment and generates a reward signal.

2.3.4. Policy

The control policy is a map of the agent’s action selection; it represents the behaviour
or strategy of an agent in an environment. It defines the mapping between states and
actions, indicating what action the agent should take when it is in a particular state. The
goal of RL is to find an optimal policy that maximizes a notion of cumulative reward signal
or value over time.

2.3.5. Reward Signal

The reward signal is a numeric value that defines the goal for the agent. When the
agent performs certain actions, reaches goals, or makes mistakes, the environment sends
the agent a reward value, which can be positive, negative, or zero. The sole objective
of the agent is, therefore, to maximize this value as much as possible over time, during
training [8].

3. Methods

In this section, we will look at the methods employed for searching for the literature
used for analysing the RL state of art, starting with the query that was used. We end it with
the metrics that are found and used in this review.

3.1. Literature Search

The query used for searching the papers was: “Reinforcement Learning” OR “DQN”
OR “Deep Learning” AND “First Person Shooter” AND “bot”, considering results only
from 2018 to 2022.

The searches were recorded using the PRISMA format [9] (see Figure 3) and identified
300 records (after duplicates were removed) for screening, with 32 records read in full text
and 13 retained for this review. During this process, two relevant results were locked out of
access. The searches were conducted using the Publish or Perish software ver. 8.6.4198.8332
on Google Scholar and Scopus databases.

For this review, only papers focusing exclusively on RL applied specifically to Death-
match FPS were considered. This means that, even if the work is about an FPS, it does not
qualify if, for example, it is about making an agent that plays the campaign component
of that game or playing a scenario where no enemies to destroy are found. The ultimate
objective should be to create a “bot” that can be added to a deathmatch mode for human
players to play against.

Papers that use older platforms such as POGAMUT have been excluded because these
platforms lack critical features such as visual data and are thus considered outdated.

From the various papers, a diversity of platforms, algorithms, and methods were
ascertained, and different surveys were extracted. Two of the thirteen papers contained
surveys, although each one focused on different matters. Seven used ViZDoom, three used
Unity’s ML-Agents, one used DeepMind Lab, and two used just Unity with custom scripts.
In Figure 4, we can see the distribution of platforms in a pie chart form.
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During this research, various other sources were used to supplement research and
better argue some positions.

3.2. Metrics

We now look at the metrics used for evaluating the performance of agents created for
FPS games. Looking through the various papers, we found various metrics being used
for comparations:

• Reward

The most common method of quantitative comparison is to use the obtained reward
to compare two or more trained agents; we found find this used in [10–16]. It is indeed
a reliable metric to use in a local environment; however, it leads to results that cannot be
compared to anything outside of that paper as the reward will differ from project to project.

• Time

Time was also used, with [11] comparing the agent’s time to train on top of the reward,
stating that agents that train faster are superior.

• Game-based metrics

We believe that data such as the number of points, kills, deaths, and shots hit and
missed are the most reliable method of metrics to train better agents, as this is the true
purpose of the agents we train: to play a game. We found this used in [12,16–18].

4. Results

In this section, we will answer the first proposed question and talk about the various
frameworks, algorithms, training architectures, and platforms that were identified in recent
papers, stating facts and comparing items inside each category.

4.1. A Survey of Frameworks

In this section, we will expose the various frameworks and libraries that have been
extracted from the collected data.

4.1.1. TensorFlow

TensorFlow is an open-source ML framework and library created by the Google Brain
team and was initially released in 2015 [19]. TensorFlow contains neural network generating
and training algorithms such as [20]:

- Convolutional Neural Networks (CNN), used in image classification and image
recognition;

- Recurrent Neural Networks (RNN), used in natural language processing and time series;
- Generative Adversarial Networks (GAN), used in image generation;
- Transformer Networks, used in machine translation and text generation;
- Autoencoders, used in dimensionality reduction and anomaly detection [19].

TensorFlow was made to be flexible, efficient, extensible, and portable, able to be
used on any device. Its main characteristic is the use of data flow graphs: it uses the
computational model of a directed graph, where the nodes are functions and edges are
numbers, matrices, or tensors. By splitting up calculations into smaller pieces, Tensor-
Flow can distribute the load throughout multiple CPUs, GPUs, and other computational
devices [21].

4.1.2. PyTorch

PyTorch is an open-source ML framework and library developed by Facebook, Inc. It
was ported to Python from the Lua Torch library and provides seamless use of GPUs by
utilizing PyTorch’s CUDA backend and its DistributedDataParallel module to distribute the
training process across multiple machines; it also provides a platform for deep learning that
provides flexibility and speed [22]. PyTorch offers automatically generated computational
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graphs with its autograd package, meaning a client can transform them during runtime,
and allows the engineer to better control the memory use of the neural network as it
develops [23]. However, PyTorch’s most important feature is automatic differentiation.
Automatic differentiation calculates the gradients of the inputs given a computational graph
and can be performed in two modes: forward and reverse. Forward mode means that it
calculates the gradients along with the result of the function, while reverse mode requires
the evaluation of the function first, and then the calculation of the gradients starting from
the output. This was what set PyTorch apart from TensorFlow and inspired changes in
TensorFlow 2.0 [24]. Although not as popular as TensorFlow, PyTorch is still used in RL for
FPS games, such as is the case in [17], where one of the contestants using PyTorch obtained
second place in the 2017 competition, beating many of the TensorFlow users.

4.2. Algorithms

In this section, we will explain the various training algorithms that have been found
in the selected papers and will look over their use cases.

4.2.1. Q-Learning

Introduced in 1989, Q-learning is an outdated Model-Free RL made to choose the best
action for the given observation. Each possible action for each observation has its Q-value,
which stands for the quality of the given act [10]. The Q-learning algorithm updates the
Q-function at each time step using the following equation:

Q(s, a)← Q(s, a) + α
(

r + γ ∗max
α

Q(st+1, a)−Q(st, at)
)

(1)

where s is the current state, a is the chosen action, r is the observed reward, st is the next
state, and at is the next action. α is the learning rate that controls how much the Q-value
is updated and γ is the discount factor that discounts the future rewards. The algorithm
continues until the Q-function converges to the optimal Q-function.

Q-learning works well when the state space is small or has a low dimensionality,
as it can learn and update Q-values for each state–action pair. In addition, when the
environment is simple and its dynamics are known, it can learn optimal policies when the
transition probabilities and rewards are well-defined.

4.2.2. Deep Q-Network

The Deep Q-Network (DQN) is a variation of the Q-learning algorithm that uses
a neural network to approximate the Q-function, instead of employing a value-based
approach [11]. The training process involves updating the weights of the neural network
based on the difference between the predicted and actual rewards obtained by taking
certain actions. This allows the agent to improve its decision-making over time and learn
optimal strategies for achieving its goals. The key feature of DQN is its use of an experience
replay, which stores past experiences in memory and randomly selects them to train the
neural network. This prevents it from becoming stuck in local optima and improves
sample efficiency.

Unlike Q-learning, DQN is effective when the state space is large or high-dimensional,
such as images or raw sensory inputs, and is well-suited for complex environments with
unknown dynamics. However, DQNs can be sample inefficient, requiring extensive in-
teractions with the environment to learn effectively. DQN also suffers from the curse of
dimensionality, where the volume of the space increases so fast that the available data be-
come sparse, meaning that it becomes challenging to obtain sufficient samples to accurately
represent the underlying distribution of the data.

In [25], results showed that a Q-learning algorithm with a naïve Bayes approach
improved the AI bot’s “believability” against a Greedy-Like Behaviour algorithm. Instead
of selecting actions deterministically based on Q-values, a Q-learning algorithm with a naive
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Bayes approach can use the estimated probabilities to perform probabilistic action selection.
This allows for a more diverse exploration of actions, reducing repetitive behaviours.

4.2.3. Double Deep Q-Network

The Double Deep Q-Network (DDQN) uses two different neural networks to train the
model, with one network used for selecting actions and the other network for evaluating
the value of those actions. This approach helps to reduce overestimation bias, which can
occur when using a standard Q-learning algorithm.

The DDQN was compared to a DQN in [11], where it outperformed in all of ViZDoom’s
stock scenarios except for the “Defend the Centre” scenario, where both achieved the same
average reward, but with DDQN reaching it 90 min faster.

4.2.4. Advantage Actor-Critic

The Advantage Actor-Critic (A2C) is a policy-based algorithm and, much like DDQN,
uses two neural networks: the actor network and the critic network. The actor network
takes the current state as input and outputs a probability distribution over possible actions.
It is trained using policy gradient methods, such as the advantage function, to maximize
the expected cumulative reward. By exploring the environment and receiving feedback, the
actor network adjusts its parameters to improve the policy over time. The critic network in
A2C learns the value function, which estimates the expected cumulative reward given a
state or state–action pair. The critic network provides a measure of how good or valuable a
particular state or state–action pair is. It helps the actor network by providing feedback on
the quality of its actions. The critic network is trained using temporal difference learning,
where it updates its parameters to minimize the difference between its estimated values
and the actual observed rewards. The actor and critic networks are trained simultaneously
to improve the learning efficiency and stability.

The A2C objective function can be defined as:

R′t =
k−1
∑

i=0
γirt+i + γ

kVθv(st+k),

Aθ,θv(st, at) = R′t −Vθv(st),

J(θ) = Eπ[
∞
∑

t=0
Aθ,θv(st, at)logπθ(at|st) + βHθ(π(st))].

(2)

θv are the parameters of the value network and Hθ(π(st)) is an entropy term used to
encourage exploration during the training process [12].

The A2C and the DQN algorithms were compared in [10] by using ViZDoom, with
results showing that while DQN is better at exploiting the enemy’s weaknesses, A2C is
better at exploring different play strategies.

4.2.5. Actor-Critic Using Kronecker-Factored Trust Region

The Actor-Critic using Kronecker-Factored Trust Region (ACKTR) is an extension of
the Advantage Actor-Critic (A2C) algorithm that uses the Kronecker-Factored Trust Region
(KFTR) algorithm to optimize both the actor and critic neural networks. By optimizing
both the actor and critic using K-FAC, ACKTR can better handle high-dimensional state
spaces and complex action spaces. For the actor, the following policy distribution is used to
define the Fisher matrix:

F = Ep(r)

[
∇logπ(at|st)∇logπ(at|st)

T
]

(3)

For the critic, the output of the critic v is defined as a Gaussian distribution and is
defined as the Fisher matrix concerning this Gaussian output distribution.

p(v|st ) ∼ N
(

v; V(st),σ2
)

(4)
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When actor and critic share lower-layer representations, the joint distribution is defined
as p(a, v|s), and K-FAC is applied to approximate the Fisher matrix to perform updates
simultaneously.

p(a, v|s) = π(a|s)p(v|s),
F = Ep(τ)

[
∇log p(a, v|s)∇logp(a, v|s)T

] (5)

Furthermore, ACKTR adopts the trust region formulation of K-FAC, choosing the
effective step size η. The natural gradient is performed with the following updates.

η = min
(
ηmax,

√
2δ

∆θTF̂∆θ

)
,

θ← θ− ηF−1∇θL
(6)

where ηmax is the learning rate and δ is the trust region radius [12].
The ACKTR algorithm and the A2C algorithm in a Single-Agent RL environment were

compared by [12], with results showing that ACKTR agents outperformed the A2C ones by
a significant margin, while also being more stable.

4.2.6. Asynchronous Advantage Actor-Critic

The Asynchronous Advantage Actor-Critic (A3C) algorithm is a policy gradient RL
algorithm that combines the benefits of both actor-critic and asynchronous methods to
learn policies for decision-making in sequential decision-making problems. It operates
in the forward view and uses a mix of n-step returns to update both the policy and the
value function. The policy and the value function are updated after every tmax action or
when a terminal state is reached. The update performed by the algorithm can be seen
as ∇θ′ logπ(at|st+k; θv)A(st, at; θ, θv), where A(st, at; θ, θv) is an estimate of the advantage
function given by:

k=1

∑
i=0
γirt+i + γ

kV(st+k; θv)−V(st; θv) (7)

where k can vary from state to state and is upper bounded by tmax [26].
In A3C, the critics learn the value function while multiple actors run in parallel,

with each interacting with a separate copy of the environment, collecting experience, and
updating a shared neural network model. The agent threads are asynchronous, which
means that they do not wait for the other threads to finish their updates before making
their own updates. This leads to faster training and better exploration of the state space.

In [17], the A3C algorithm was among the many algorithms used during the competi-
tion in 2017, and the participants who used it were able to achieve greater results than their
opponents, with an A3C + behaviour cloning achieving first place.

The A3C algorithm was tested against a A3C-Anticipator network in [13] but it was
concluded that there was not a significant difference between the two.

4.2.7. Proximal Policy Optimization

The Proximal Policy Optimization (PPO) is a model-free RL algorithm that is used to
train a policy function that maps the state of the environment to an action. It alternates be-
tween sampling data through environment interaction and optimizes a surrogate objective
function using stochastic gradient ascent. The PPO algorithm has some of the benefits of
the Trust Region Policy Optimization (TRPO) algorithm but is much simpler to implement,
more general, and has a better sample complexity [27]. PPO tends to have better generaliza-
tion properties compared to TRPO. TRPO is designed specifically for policy optimization
with continuous actions and imposes constraints on the policy update based on a trust re-
gion. PPO, on the other hand, is more flexible and can handle both continuous and discrete
action spaces. PPO also offers improved sample complexity compared to TRPO. While
TRPO requires multiple iterations of policy optimization, which can be sample-intensive,
PPO employs multiple epochs of mini-batch updates on collected data, which makes more
efficient use of the collected samples and leads to better sample efficiency.
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The surrogate objective approximates the expected reward based on the collected
trajectories. Stochastic gradient ascent optimization is used to maximize this surrogate
objective. The surrogate objective in PPO is a combination of two terms: a policy ratio
term and a clipping term. The policy ratio compares the probabilities of the actions under
the old and updated policies. It measures how much the new policy deviates from the
old policy. Equation (8) shows the PPO’s objective function that is not typically found in
other algorithms:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(8)

where θ is the policy parameter, t denotes the empirical expectation over timesteps, rt is
the ratio of the probability under the new and old policies, respectively, t is the estimated
advantage at time t, and ε is a hyperparameter, usually 0.1 or 0.2. In Algorithm 1, we see
how a PPO algorithm that uses fixed-length trajectory segments works in pseudocode:

Algorithm 1 PPO, Actor-Critic Style

for iteration = 1, 2, . . . do
for actor = 1, 2, . . . , N do

Run policy πθold
in environment for T timesteps.

Compute advantage estimates Â1, . . . , ÂT
end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

The PPO algorithm is one of the algorithms that is usable by Unity’s ML-Agents toolkit
and sees much use in papers that use this toolkit, such as [14,15]. Unfortunately, we do not
have any data that compare the PPO algorithm to other algorithms in the ambit of training
agents for FPS games.

4.3. Training Architectures

In this section, we will talk about the various training architectures that were found in
the data.

4.3.1. Single-Agent Reinforcement Learning

Single-Agent RL is a branch of machine learning that focuses on the interaction
between an agent and its environment. In Single-Agent RL environments, there is one
agent learning by interacting with either just the environment without AI or against
traditional AI agents [16], as is the case in [3], where the agent learns to play various Atari
arcade games.

4.3.2. Self-Play

Self-play is a technique often used in RL that involves having RL agents play against
themselves to improve performance. As seen in Figure 5, a single agent acts as all players,
learning from the outcomes of its own actions. Self-play has been successfully applied
in [2], where researchers used this method to develop their Chess- and Shogi-playing AI.

4.3.3. Multi-Agent Reinforcement Learning

Multi-Agent RL focuses on scenarios where multiple agents learn and interact in
a shared environment. As shown in Figure 6, each agent is an autonomous entity that
observes the environment, takes actions, and receives rewards based on its own actions
and the actions of other agents. It can take the form of multiple scenarios, be it cooperative
with each other, competitive between each other in a 1-vs.-1 scenario, or a team-vs.-team
scenario [16].
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4.3.4. Behaviour Cloning

A form of imitation learning, behaviour cloning involves capturing the actions of a
human performer and inputting them into a learning program. The program will then
output rules that help agents reproduce the actions of the performer [28]. In video games
RL, this usually means having a human player play in the constructed environment, where
their actions are recorded and then used to train the agent’s policy. The more diverse the
recording data are, the better.

4.3.5. Curriculum Training

Just like neural networks are inspired by the human brain, the Curriculum Training
architecture mimics human training by gradually increasing training difficulty. In super-
vised learning, this means increasing the complexity of training datasets, while in RL, it
means increasing the complexity of the environment and the task that the agent is required
to perform [29].

In practical terms, this means that, for example, if one is training an agent on how to
jump over a wall, they might want to start by having a wall with no height, and as the
agent accumulates reward, the wall starts to become taller, as shown in Figure 7. At the
beginning of the training, the agent has no prior knowledge of the task, so it starts exploring
the environment to learn a policy and randomly tries out things. It will eventually reach
the goal, understand its objective, and progressively improve at jumping over higher and
higher walls [14].
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4.4. A Survey of Platforms

There exist various platforms for developing and investigating ML-Agents for video
games. Some are exclusively made for research purposes, but engines such as Unity [31] allow
both research and application of research to commercial products all in the same environment.

From the gathered data, we have extracted three platforms: DeepMind Lab, ViZDoom,
and Unity. We will go over each one of them, explain them, and expose the use cases that
were found.

4.4.1. DeepMind Lab

The DeepMind Lab is a platform tailored for ML created by the DeepMind company
and released in 2016. It is built on top of the IoQuake3 engine, which by itself is based
on Quake III arena code, features assets made for visual learning, and allows for the
easy creation of randomly generated levels with text levels. Rendering of the engine uses
OpenGL and can use either a GPU or a software renderer [32]. However, due to it being
based on such software, its physics and rendering engine can be considered quite dated.

• Use Cases of the DeepMind Lab platform

Google’s DeepMind Company used DeepMind Lab in [33] to train RL agents in a
multi-agent scenario that required teamwork. They trained their agents for 450 k games
with their inhouse developed For the Win (FTW) algorithm, and the initial results from this
research showed that their agents started winning against average human opponents after
50 k games. Later, at the 200 k games mark, they began to beat strong human opponents,
proving that it was possible to create and train agents to play as a team and even win
against human opponents. This research also showed the benefits of using agent-vs.-agent
scenarios and how well the multi-agent training architecture works.

4.4.2. ViZDoom

Based on the open-source ZDoom source port, which itself is based on the Doom
engine, ViZDoom was created as a platform for researching ML in 3D environments as,
at the time, the most widely used platforms were for Atari games [34]. ViZDoom works
by giving the agent low-level information with the use of Visual Recognition, although it
is also possible to input game variables to the agent [11]. The ViZDoom platform is very
lightweight, although this is because its visual and physical complexity is extremely limited
by today’s standards.

• Use Cases of the ViZDoom Platform

ViZDoom comes with eight different scenarios created for different training purposes,
with each one focusing on a different aspect that an RL agent must learn, such as shooting,
surviving, identifying, dodging, etc. [35].

ViZDoom was picked by [10] to train agents and test RL agents with a DQN and an
Advantage Actor-Critic (A2C) algorithm, because it was lightweight and had native Python
support. The experiment’s results show that DQN takes less experimental steps and focuses
more on exploiting its Q_table, while the A2C algorithm focuses more on updating it. This
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in turn meant that DQN was better for exploiting the enemy’s weakness, while A2C was
better for exploration.

A novel method called combo-action was developed by [18], being macro actions built
on a set of primitive actions. The model was trained as a High-level Controller and when
tested against other agents, the combo-action agent performed much better, proving the
efficiency of the method.

Single-agent-vs.-multi-agent training was tested by [16], pitting RL agents against
each other in a 1-vs.-1 scenario and 1 RL agent against a traditional AI agent. The results
from these tests showed that agents trained against other agents perform much better,
beating the agents that trained against traditional AI agents. This experiment showed that
training agents by using multi-agent training scenarios is superior to single-agent training
ones, and that future works should always strive to implement multiple agents in their
training scenarios.

The Advantage Actor Kronecker-Factored Trust Region (ACKTR) algorithm was
compared to the Advantage Actor-Critic (A2C) algorithm by [12], in a single-agent scenario.
They found that the ACKTR agents significantly outperformed the A2C agents in all metrics
by a significant margin.

An Asynchronous Actor-Critic Agent (A3C) algorithm with an anticipator network
was pitted against a regular A3C algorithm [13]. This anticipator predicts the next frame ac-
cording to the current frame and inputs it to the A3C algorithm. The results show that there
is useful information in the predicted frames and that it improves the agent’s performance.

In [11], various algorithms were compared: Deep Q-Learning Network (DQN), Double
Deep Q-Learning Network (DDQN), Deep Recurrent Q-Network (DRQN), and Double
Deep Recurrent Q-Learning Network (DDRQN), while using the TensorFlow library for
supervised learning. Results showed that DDQN performed better than DQN in most
scenarios except Defend the Centre where they both performed similarly. DRQN and
DDRQN also performed better in Defend the Centre (combat scenario). Results also
showed that giving the agent access to game variables, such as the agent’s health, increased
training time but significantly increased performance.

A competition in [17] involved various participants competing in creating the best RL
agent player: each one using different algorithms, frameworks, and techniques. Frame-
works used included TensorFlow and PyTorch and the algorithms were Direct Future
Prediction (DFP), A3C, DRQN, and others. Training architectures included behaviour
cloning and curriculum learning. In 2016, victory went to a participant who used Tensor-
Flow with a Direct Future Prediction (DFP) algorithm, while in 2017, the victor also used
TensorFlow but this time with a A3C algorithm and behaviour cloning. From this paper,
one of the main conclusions is that using behaviour cloning and curriculum learning is
superior to not using any, as the contestants who used these training architectures achieved
better results than many others who did not. In terms of algorithms, the victor proved to
be the A3C algorithms, placing second in 2016 and first in 2017.

4.4.3. Unity

The Unity engine is a cross-platform multimedia platform made for creating 3D and
2D games, simulations, and other experiences [31]. Unlike other previously mentioned
platforms, Unity is a standalone general platform, meaning that users can freely create
their environments with many more customized parameters than the alternatives. Unity
contains its physics engine and dedicated tools to create commercial 3D and 2D games,
as well as a tool to create RL agents, the ML-Agents toolkit [36]. Furthermore, Unity’s
in-engine editor is easy and fast to use, allowing for quick prototyping and development of
environments [37].

• Use Cases of the Unity Engine Platform

Unity was connected to TensorFlow via an API in [15], where they used a PPO al-
gorithm to train RL agents to play a team-based survival shooter, with the map being
a randomly generated maze. The objective was to train agents that could navigate the
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randomly generated maze while dealing with enemy agents. Results showed that continu-
ous action spaces with no visual observations and no recurring neural network were the
best option.

A Q-learning algorithm with a naïve Bayes (QNBB) approach was used to train an
RL state machine in playing as a simple enemy in a custom-made game [25]. This agent
could learn from previous games, called “stages”. They then conducted a survey in which
20 participants played 5 games each for 4 stages of the agents, where the enemy is randomly
the Q-learning agent or a Greedy-Like Behaviour (GLB) algorithm agent. Participants were
asked to rate both agents per stage in believability, overall game difficulty, and level of
playability. Results showed that while the first stage of the QNBB was rated worse than
the GLB one, subsequent stages were always the opposite and that the QNBB algorithm
always improved with more experience.

As referred to, the ML-Agents toolkit is an open-source project that allows researchers
and developers to use environments created in the Unity engine as training grounds for
ML-Agents by connecting via a Python API [36]. The toolkit features support for training
single agents, multi-agent cooperative, and multi-agent competitive scenarios with the use
of several RL algorithms, such as PPO and Soft Actor-Critic (SAC) [36].

Unity with ML-Agents was used by [38] to create ML-Agents using RL that can
participate in competitive FPS matches by employing behaviour cloning. To obtain results,
they conducted a survey with 18 participants who were asked to identify the ML-Agent in
a multiplayer match. Of the 18 participants, 61% correctly guessed the agent, but many
noted that it was hard to identify it.

A multi-agent scenario was used by [39] to train agents in an attacker–defender
scenario, by using Unity with ML-Agents.

In [14], the ML-Agents toolkit is used to compare one agent trained with curriculum
training to another agent trained without curriculum training. The curriculum agent was
not only able to achieve higher rewards but also achieve high rewards faster, with the final
results showing that agents trained with curriculum learning have a significantly better
performance than ones trained without it.

5. Discussion
5.1. Platforms and Methods

Our second proposed question was about which methods currently being used were
the most effective for creating AI bots for better experiences.

5.2. Algorithms

Of the algorithms that we discussed in Section 4, the data say that the A3C algorithm
was the best compared to DQN, DDQN, and A2C, but since these comparations, algorithms
such as PPO and SAC have appeared. PPO has the advantage of being a more stable
algorithm than A3C, which can be sensitive to hyperparameter settings and requires careful
tuning but, unfortunately, there have not been any comparisons between A3C and these in
FPS games and, as such, it is difficult to say which is the better one.

5.2.1. Methods

After looking at the data on the various training architectures, we can say that training
agents with the self-play or multi-agent training architecture proved much more efficient
than using single-agent environments. This is supported not only by [16], who compared
the two architectures, but also by [33], who used multi-agent scenarios right from the start,
obtaining results much quicker.

However, we believe that before undergoing multi-agent training, training designers
should first incorporate curriculum training or behaviour cloning into their training regime.
As proven by [14], by using curriculum learning, agents more easily grasp the basics of how
to perform the required tasks, much like humans must learn how to walk before running.
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An alternative to curriculum learning, behaviour cloning can be used to quickly train
an agent to acceptable levels, although [39] reported that agents will start training by not
deviating from what was demonstrated, meaning that there is less room for experimentation.

5.2.2. Platforms

In terms of AI research and development platforms, we have identified three (Table 1).
Although Unity allows for a more flexible, fast, and easy-to-use environment creation
editor, it is still very heavy compared to ViZDoom and DeepMind Lab, which are very
lightweight due to being based on older engines.

Table 1. Table with the various identified ML research and development platforms.

Platform Name Release
Date

Base
Domain

Computer
Vision? Load Amount Software

Mode? Other Features

DeepMind Lab 2016 IoQuake3 Yes Light Yes -

ViZDoom 2016 ZDoom Yes Very Light Yes Flexible training code

Unity’s
ML-Agents 2017 None Yes Heavy No Easy and fast to use, advanced

physics, flexible environment

ViZDoom can be considered the most flexible in terms of code, as shown by [14], as
it can use a wide array of algorithms and frameworks, instead of being chained to what
comes out of the box, such as in Unity’s ML-Agents’ case.

Unlike Unity, ViZDoom and DeepMind Lab also have software rendering [32,34],
meaning that rendering of graphics can be performed in the CPU, leaving the GPU free to
compute the ML part of the projects.

In terms of physics, due to being based on such old engines, ViZDoom and DeepMind
Lab have limited simulations, something that Unity compensates for with its Nvidia
PhysX integration.

Although ViZDoom is more lightweight than Unity, we still feel that researchers should
consider using Unity or an equivalent due to its flexible environment construction and
advanced physics. Both ViZDoom and DeepMind Lab are based on very old engines that
are considered more than outdated in today’s time, and as such should only be considered
in cases where unity or any newer alternative cannot be used in any way.

In conclusion, if what we are looking for is a flexible and easy-to-use training environ-
ment that can produce agents usable in commercial projects, we may want to consider using
Unity’s ML-Agents. However, if our objective is to research algorithms and frameworks in a
resource-light platform, then ViZDoom or even DeepMind Lab might be more appropriate.

5.3. Human vs. AI

The third proposed question asks if RL AI bots can rival human players. In [33], we
see that at approximately 50 k games, it started beating what was considered an “average”
player, while after approximately 200 k games, it started beating “strong” players. Although
we only have this data to rely on, we can say that RL AI bots can beat human players if
they receive enough training.

Looking at examples outside of FPS games, such as [40], the OpenAI company trained
an RL AI with self-play to play the e-sports game of Dota 2. In doing so, the AI managed to
beat the world champion in 2019 in an astonishing 2–0 match in favour of the AI team.

Another non-FPS case to look at is [41], where the DeepMind team trained their
Alphastar RL AI to play the game of Starcraft 2 and was then made to play the game
on the official servers, against human players, ranking up the game’s competitive ladder.
Alphastar was able to achieve grandmaster rank (the highest rank in the game) on all
3 races available to play and was ranked above 99.8% of players [41].
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These papers help supplement the idea that RL AI can indeed be much better than
traditional AI, and can even reach the top ranks in terms of skill when given enough training
time, although there needs to be more research conducted in the vein of FPS games.

5.4. Better Gameplay, Better Enjoyability

The final proposed question was about evaluating gameplay between RL AI bots and
traditional AI bots, to see which one leads to better gameplay and more enjoyability on the
part of the player. To answer this question, we turn to the surveys found.

From the collected surveys in [25], we obtained a total of 38 participants who had
played against both an RL agent and a traditional AI agent and were in some way asked to
compare the two of them. The survey found in [38] is about identifying the RL agents and
thus cannot be used here.

The survey in [25] asked participants to evaluate playability from−2 to +2 (very bad to
very good) for each agent. This study then gives the averages of scores for each agent. After
the RL agent had played various games and gained experience, against 20 participants, the
average “level of playability” for it was slightly less than 1, while for the traditional agent,
it was slightly less than 0.

With these results, our conclusion is that RL agents are just above traditional AI in
terms of enjoyability, but we believe that there is insufficient data.

6. Future Work

In this next section, we will talk about future work possibilities, starting with some
suggestions, then some potential directions for future work, and how researchers could
benefit from using formal methods in their work. Finally, we will discuss potential ethical
issues with using ML in FPS.

For future work, one thing to note is that both researchers and developers should
not train just one agent (or two if they are comparing something). Multiple agents should
always be trained, then either use every trained agent (in cases where teams can be formed)
or pick the best ones. One way to test this is to make the agents play the environment and
see who achieves better results, such as score, total kills, or fewer deaths. Trained brains do
not always perform the same. In [16], one of the trained agents scored erratically and did
not perform like its peers; on top of that, all the trained agents had different albeit similar
results, yet this proves that problems can occur and it is best to prevent them. Some of the
papers analysed during this review only trained one agent for each of their purposes, which
raises the question of the credibility of the results. RL includes many randomized factors,
meaning that no two agents will ever perform the same even when the environment and
training methods are the same.

When comparing training architectures, results should be drawn by pitching multiple
teams of bots that were trained in different environments against each other over many
games. The team that has the most wins should be considered the best. Many times,
researchers just compare the total reward amount, which works for comparing algorithms,
but not so much for other parts of the RL training frame. We believe that putting the bots
in practical situations and comparing the results should be the go-to method for evaluating
performance. Next, we will present two potential directions for future research, Transfer
Learning and Multi-Agent RL, and then we will present something that future researchers
should keep in mind when building their ML projects: formal methods.

6.1. Transfer Learning

The first research subject is transfer learning, which allows bots to leverage prior
knowledge and experience to enhance their performance in a new environment. This
could be useful in FPS games where the bots need to learn multiple tasks and adapt to
different environments.
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6.2. Multi-Agent Reinforcement Learning

Just as [32,39] have achieved, one way to improve bots is to make them work together
in teams, by training multiple agents to work together towards a common goal. In FPS
games, Multi-Agent RL could lead to more intelligent and coordinated teamplay, which is
critical for success in team-based game modes.

6.3. Formal Methods

The complexity and non-deterministic nature of AI algorithms makes it challenging to
guarantee the correctness and reliability through traditional testing and validation methods
alone. As such, we should turn to formal approaches for AI-based technique verification.
Formal methods are mathematical approaches used to specify, build, and verify software
and hardware systems [42].

There exist various formal methods that can be used, such as Abstract Interpretation,
Semantic Static Analysis, Model Checking, and many others [43]. These methods can be
applied to the process of creating RL agents for FPS games in various ways:

• Specification and Verification

Formal methods can help in specifying the desired behaviour and properties of the
agent and verifying whether the agent satisfies those properties [44]. This ensures that the
agent behaves correctly and meets the specified requirements. Techniques such as model
checking, theorem proving, and formal specifications can be used for this purpose.

• Model Construction

Formal methods can aid in constructing formal models of the game environment
and the AI agent. These models capture the game dynamics, rules, and interactions. By
formalizing the environment and agent behaviours, it becomes possible to reason about
their properties and make assertions about the agent’s actions and decisions.

• Debugging and Error Detection

Formal methods can assist in debugging and error detection during the development
of agents. By analysing the formal models and properties, it becomes possible to identify
potential flaws, logic errors, or unintended consequences in the agent’s behaviour. This
helps in improving the agent’s performance, stability, and overall quality.

6.4. Ethical Issues in Training AI for FPS

The rise of ML technology has given rise to many ethical issues related to its develop-
ment; we believe that it is important to discuss the ethical issues raised by training AI for
FPS games.

• Issues with Learning

RL algorithms learn through trial and error, often by maximizing rewards or mini-
mizing penalties. If the reward system is not carefully designed, there is a risk that the
algorithm may learn undesirable behaviours. For example, it might prioritize achieving
high kill counts at the expense of other objectives, such as teamwork or following ethical
rules within the game.

• Transparency

ML algorithms can be complex and difficult to interpret, and this lack of transparency
raises concerns about how the AI behaves and makes decisions within the game. Players
may question the fairness of the AI opponents’ actions if they cannot understand how
they work.

Developers must ensure transparency in how their ML algorithms work and what
data are used to train them so that the players, consumers, and others not involved in
development can better understand how it works [45].
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• Data Privacy

ML often requires substantial amounts of data to train effectively. This can raise
concerns about privacy if the algorithms collect and process personal player data without
proper consent or transparency. Players should have control over the data collected about
them and understand how it is used [45].

7. Conclusions

In this study, we delved into the various applications of RL to the creation of AI “bots”,
or agents for the purposes of using them as opponents in FPS games. Through an extensive
exploration of the existing literature, we have gained valuable insights into the current
state of the field and identified several key findings.

Firstly, we identified the various algorithms, training architectures, and platforms that
researchers are using to create and train their agents. We then discussed these findings,
answering each one of the proposed questions one by one, by comparing each one of the
found algorithms, each one of the platforms, and finally each one of the methods, and
drawing conclusions. We then discussed how these agents perform against humans and
how they can bring better gameplay to FPS games, and found that indeed RL agents can
beat human opponents. However, it is still hard to say if they bring better gameplay.

In the end, we talked about the future, by firstly considering what researchers should
keep in mind in future research, and what new techniques could be explored. We then
finished this systematic review by talking about the ethical issues in training AI for FPS
games and how developers and researchers alike can avoid bad-use cases.

RL is currently still in its “infancy” and it is still a hardware-demanding task to train
an agent, let alone various agents to test against each other. However, the next step in
research is to keep increasing the scale with more agents, more inputs, more training steps,
and new techniques.
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