
Heliyon 9 (2023) e16297

Available online 29 May 2023
2405-8440/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Smart scan of medical device displays to integrate with a 
mHealth application 

Pedro Lobo a,b,*, João L. Vilaça a,b, Helena Torres a,b,c,d,e, Bruno Oliveira a,b,c,d,e, 
Alberto Simões a,b 

a 2AI, School of Technology, IPCA, Barcelos, Portugal 
b LASI – Associate Laboratory of Intelligent Systems, Guimarães, Portugal 
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A B S T R A C T   

Background: The daily monitoring of the physiological parameters is essential for monitoring 
health condition and to prevent health problems. This is possible due to the democratization of 
numerous types of medical devices and promoted by the interconnection between these and 
smartphones. Nevertheless, medical devices that connect to smartphones are typically limited to 
manufacturers applications. 
Objectives: This paper proposes an intelligent scanning system to simplify the collection of data 
displayed on different medical devices screens, recognizing the values, and optionally integrating 
them, through open protocols, with centralized databases. 
Methods: To develop this system, a dataset comprising 1614 images of medical devices was 
created, obtained from manufacturer catalogs, photographs and other public datasets. Then, three 
object detector algorithms (yolov3, Single-Shot Detector [SSD] 320 × 320 and SSD 640 × 640) 
were trained to detect digits and acronyms/units of measurements presented by medical devices. 
These models were tested under 3 different conditions to detect digits and acronyms/units as a 
single object (single label), digits and acronyms/units as independent objects (two labels), and 
digits and acronyms/units individually (fifteen labels). Models trained for single and two labels 
were completed with a convolutional neural network (CNN) to identify the detected objects. To 
group the recognized digits, a condition-tree based strategy on density spatial clustering was 
used. 
Results: The most promising approach was the use of the SSD 640 × 640 for fifteen labels. 
Conclusion: Lastly, as future work, it is intended to convert this system to a mobile environment to 
accelerate and streamline the process of inserting data into mobile health (mhealth) applications.   

1. Introduction 

Daily health check-ups play an important role in the early prevention of health problems. In the health sector, different hospitals 
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and governmental organizations are developing mobile health (mhealth) applications to centralize information about patients. Some 
of this information can be filled in by the patients, in their everyday life, like their blood pressure or glycemic levels. 

Currently, to record medical information from these applications, the patient needs to enter manually the obtained data. While 
some devices offer wireless and/or Bluetooth connectivity, they are limited to be used by the manufacturers’ own applications, using 
proprietary protocols. Data entry is one of the most mentioned features of mhealth applications for diabetes and hypertension in user 
reviews [1]. 

The work developed and presented in this paper aims to automate the digitization of the information presented by medical devices, 
aggregating this data from different sources in a single application, through the development of a smart scan system. This consisted in 
the development of a framework that results from the combination of different architectures that were tested as will be presented 
throughout this paper. This system is directed to mobile applications so that patients will be able to use the camera of their smartphone 
to read the measurements presented on screens of medical devices as well as the identification of the device itself, allowing the 
automatic registering of values on a local database, or sent to a centralized system. In this way, the relevance of this study is not just 
about applying Artificial Intelligence (AI) to medical data, but about developing a framework that will positively impact people’s 
health care in their daily lives [2]. 

The idea of developing a smart scan of medical device display was already explored in some previous works. Finnegan et al. used 
traditional image processing methods to identify regions of interest containing segments of the seven-segment, and then classified the 
digits using a MLP classifier [3]. Their system achieved a classification accuracy of 93% and an F1 score of approximately 84. The 
framework that we propose aims to improve the accuracy by using deep learning methods instead of traditional image processing 
methods to detect digits. 

Another work that proposes a solution on this topic was developed by Tsiktsiris et al. [4]. The project describes the development of 
a scanning system for medical device screens to help elderly people read measurements using a smartphone, which involved adaptive 
thresholding, segmentation, and classification using a decision tree. The system achieved an accuracy of 96.22% for blood pressure 
meters but was limited to only that device. The framework that we propose in the current paper aims to expand the range of devices 
and develop a versatile scanning system that is not dependent on the contrast between digits/background. 

Shenoy and Aalami, created a mobile application for patients to scan medical measurements to later be reported to a doctor [5]. The 
interface of the application allows the user to select the type of medical device to be scanned, and the device’s camera is used to fit the 
digits within a predefined bounding box for analysis. A back-end server is used to process the information, requiring an active 
connection. To process the analyses, the image is divided into individual digits, and each digit is classified using the Random Forest 
Classifier, which was chosen due to its accuracy of 98.2%. Unlike Shenoy and Aalami work, we intend to develop a solution that 
automatically detects and analyzes them and runs locally on the mobile device. 

In the industrial sector, there is also a need to digitize sampled digits on displays, and Kulkarni and Kute proposed a new method for 
reading seven-segment digits in images [6]. They focused on devices with a backlight, making it easier to distinguish the digits from the 
background through binarization and simple filters. After rotating and segmenting the image, they used a decision tree based on the 
distribution of black data pixels for classification. Their method achieved an accuracy of 79%. 

Through our study, five types of devices were explored: glycemia and blood pressure monitors, whose measurements are typically 
collected in current mhealth applications; thermometers, oximeters, and scales, which are common devices to be found in most 
people’s homes. Given oximeters and blood pressure monitors also measure the patient’s heartbeat, the system can read and store these 
values as well. 

In the case of oximeters, glycemia, and blood pressure meters, the scanning process consists of reading the digits of the mea
surements and the detection of the abbreviations or measurement units shown on the device. This information will be used to, 
automatically, detect the type of device and, when relevant, the measurement unit. For scales and thermometers, due to the lack of 
acronyms or unit of measurement in many cases, or the small size of this information, the scanning process was developed to only 
identify the digits and not the device itself. Therefore, users must manually indicate the type of device being used. 

The main contributions of this paper are:  

• A dataset of photos of medical device screens for developing machine learning and object detection techniques;  
• Comparison of performance of state-of-the-art strategies for object detection (SSD and Yolo) applied to the detection of digits and 

abbreviations/measurement units present on the display of the devices;  
• Development of a condition tree to differentiate/classify the data presented on medical devices screens by medical analysis; 

The remaining of this chapter is organized as follows: The framework and the description of the procedures necessary for the 
implementation of the methods is made in Section 2. In Section 3, the results of the studied methods are presented. After all the 
experiences, Section 4 performs an analysis of the results obtained. Finally, we conclude with some final remarks in Section 5. 

2. Methodology 

2.1. Overview 

As depicted in Fig. 1, the proposed method relies on four conceptual blocks: 
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1. The creation of two distinct datasets: one for the object detection task (digits and other features, like unit labels), and another one, 
extracted from the first, for the classification of the detected objects. The first dataset was artificially augmented to increase the 
number of images and to add variability and noise.  

2. The training of object detection models using the collected dataset. This model is responsible for the generation of the bounding box 
containing digits, measure units and/or acronyms usual in certain medical devices.  

3. After detecting the position of the objects, another model is trained to classify each area, either with the correct detected digit, or 
the measurement units in the display of the medical device.  

4. Finally, a condition tree strategy is used to group the detected digits, forming values. This process takes information about which 
device is being analyzed, as well as the position of the digit. 

2.2. Datasets 

This section describes the two datasets preparation: the object detection dataset (to detect the places where digits and/or mea
surement units are shown), and the second dataset, used to classify these regions as each one of the ten available digits or the mea
surement different units. 

2.2.1. Object detection dataset 
The object detection dataset was constructed by taking pictures of some local devices, the compilation of images of medical devices 

found on the internet, namely from catalogues from manufacturers, as well as including the images present in a public dataset [3]. This 
dataset is characterized in Table 1 (it includes the number of images obtained from the public dataset [3], as well as counts per medical 
device oximeter, glucometer, and blood pressure monitor). 

Each image was subject to three steps:  

• Preprocessing: Given the images were obtained from different sources, the first step normalizes them, namely guaranteeing a 
common file format and image size (832 × 832 pixels).  

• Data augmentation: To create diversity the original dataset was subject to data augmentation1 (offline). This step increased the 
number of images in the dataset, from 1614 images up to 30,431 images. These new images add variability and noise, to allow a 
more robust model, less sensible to structural changes of the objects detected through the transformations of crop, scale, shear, 
translation, and rotation. To give robustness to different types of lighting and noise, nearest neighbor, bilinear interpolation, 
Gaussian/average/media blur, color channels inversion, brightness, hue, and saturation changes, contrast normalization and 
grayscale transformations were also applied.  

• Labelling: This dataset was manually labelled, describing the bounding boxes for each interesting object and, for each object, the 
class to which it belongs. Thus, a fifteen-label list was created, including the ten digits (from 0 to 9), and five units/acronyms labels: 
pulse, oxygen level, glycemic level, and systolic and diastolic blood pressures. Note that, through this process, it was possible to 
generate the labeling dataset for two distinct classes (digits or acronyms/units) and for fifteen classes (thus, distinguishing between 
the ten digits and the five different acronyms/units). 

2.2.2. Object classification dataset 
From the areas of the abovementioned dataset, another dataset was constructed for object classification. To extract the images, was 

decided to use a YOLOv3 model trained over the original dataset (22,860 images for training, and 7571 images for testing). The 
bounding boxes generated by the model led to a dataset of 495,647 images. These images were assigned to one of the fifteen classes 
already described and scaled to a dimension of 32 × 32 pixels. 

An alternative approach could reuse the manual labeling present in the original dataset. However, the manual labeling bounding 
boxes are perfect and may not give the necessary robustness to the Convolutional Neural Network used in the classifier. 

Table 2 present some examples of images for the five measurement possibilities, and Table 3 present the number of images for each 
class. This table also presents the distribution of each label for the training and test phases. 

2.3. System framework 

This section describes the system framework. It starts with the object detection model, with a description of the attempted ex
periments as well as the selected approach. Afterward, the classifier model is presented, where the full neural network structure will be 
depicted. Finally, the condition tree for digit clustering will be explained. 

2.3.1. Object detector 
Different object detection models were attempted, to extract the information present on the screens of the medical devices. Three 

distinct approaches were tested: YOLOv3 [7] and SSD Mobilenet v2 [8] (using both 320 × 320 and 640 × 640).2. These models were 
selected given that the intelligent scanning system being developed is intended to run on smartphones, so they should be less 

1 https://github.com/mukopikmin/bounding-box-augmentation (2021).  
2 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md (2021). 
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computationally expensive as possible. This is also the reason why the object detector models were tried using single-stage and not 
two-stage [9]. 

To test the different models was used a workstation with a NVidia GTX 1070 8 GB, an Intel Core i7-8700, and 32 GB of RAM, 
running with the NVIDIA libraries CUDA 11.0 and CUDNN 8.0.4 for YOLOv3, and CUDNN 8.1.0 for the SSDs models. 

Fig. 1. Overview of the proposed smart scan system.  

Table 1 
Number of images and devices from each source.   

Commercial Catalogs Photographs Public Dataset 

Nr of Dev. Nr of Img. Nr of Dev. Nr of Img. Nr of Dev. Nr of Img. 

Oximeter ~23 253 1 68 0 0 
Glucometer ~39 233 0 0 3 254 
Blood Pressure Monitor ~57 307 1 111 3 388  

Table 2 
Examples of images for each of the five acronyms/units.  

Pulse Glycemic Level Systolic Pressure Diastolic Pressure Oxygen Saturation 

Table 3 
Distribution of images by label.  

Label Dataset Train Set Test Set 

Zero 52,949 10.7% 42,432 10.5% 10,517 11.7% 
One 71,658 14.5% 57,769 14.2% 13,889 15.4% 
Two 50,348 10.2% 41,583 10.3% 8765 9.8% 
Three 27,205 5.5% 22,647 5.6% 4558 5.1% 
Four 26,920 5.4% 21,852 5.4% 5068 5.6% 
Five 31,571 6.4% 26,132 6.4% 5439 6.1% 
Six 35,543 7.2% 29,260 7.2% 6283 6.9% 
Seven 33,354 6.7% 27,106 6.7% 6248 6.9% 
Eight 60,473 12.2% 50,724 12.5% 9749 10.8% 
Nine 37,418 7.6% 31,118 7.7% 6300 7.0% 
Pulse 18,804 3.8% 15,448 3.8% 3356 3.7% 
Glycemic 8775 1.8% 7213 1.8% 1562 1.7% 
Systolic 14,959 3.0% 11,602 2.9% 3357 3.7% 
Diastolic 16,577 3.3% 13,077 3.2% 3500 3.9% 
SpO2 9093 1.8% 7751 1.9% 1342 1.5% 
Total: 495,647  405,714  89,933   
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Regarding the network structures, for YOLOv3 was used the Darknet (darknet53.conv.743) and, in the case of SSDs was used in the 
TensorFlow Model Garden API (v2). These models were trained not just to compare their performance but also to verify under which 
conditions they have the best performance. For that, all models were trained with three different goals:  

• a model trained to detect a single object, where digits and acronyms/units are the same label;  
• a model trained to detect and classify objects in two distinct classes: digits or acronyms/units;  
• a model trained to detect and classify objects in fifteen classes (thus, distinguishing between the ten digits and the five different 

acronyms/units). 

All training processes were performed until the loss got stable. Table 4 presents the number of training steps and the obtained loss 
for each of the nine combinations of models. 

2.3.2. Classifier 
To perform the classification of the detected objects was used a Convolutional Neural Network (CNN). This choice was based on 

Kulkarni and Kute previous work, where this approach presented better results in similar contexts when compared to other classifiers 
[10]. 

This solution is used together with the object detector models described before, which were trained for single label. The classifier 
was trained to distinguish between the fifteen classes described for the second dataset. The architecture for the CNN was based on the 
work of Dimitrios Roussis4 and is summarized on Table 5. The training process ran for 200 epochs of 100 steps each. 

2.3.3. Condition tree 
After the detection of the digits, they need to be grouped to make up the measurement’s values. To perform this operation was used 

a clustering condition tree, based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique, as it has a 
non-fixed number of labels to group the measurements. The data used as input for this process came from the object detector step and 
consisted of the x and y coordinates referent to the centroids of the detected information. 

(A) Pre-processing: The pre-processing consists of two steps: filtering data that do not represent any medical analysis, and forming 
the cluster’s input. Some devices show some other information that are not relevant (for instance, the number identifier of the patient, 
for devices that allow to track measures for more than one user). These digits are easily filtered because they have a smaller occupied 
area compared to the relevant values. DBSCAN requires setting a density threshold. As the scanning distance is variable (between 
camera and medical device screen), the average proximity between detected objects also varies so that a fixed threshold value cannot 
be applied to all situations. The solution was to identify the limits (maximum and minimum) of the detected bounding boxes infor
mation and crop this part of the image. Then, this area of interest is normalized to a fixed resolution of 1:1 without being deformed by 
adding vertical or horizontal edges if necessary. The transformation applied to the original image is also applied to the coordinates of 
the centroids. (b) Clustering: Devices were divided into 2 groups: those that only display one measure (scales, glucometers and 
thermometers) and those that display more than one measure on the screen (such as oximeters —oximetry and pulse—, and blood 
pressure monitors —systolic, diastolic and sometimes pulse). 

As previously stated, sometimes the devices have further information not relevant for extraction, that are easily filtered out given 
their occupation area on the screen. Thus, after this filtering, it is easy to extract the relevant information for the first type of device, 
without applying any clustering technique. 

For the second group of devices, the clustering process is responsible for relating obtained digits accordingly with their spatial 
position. This information was based on the proximity of the centroids of the bounding boxes of the objects detected during the object 
detection step. One question that arose during the development was whether it would be more efficient to perform the clustering using 
2D coordinates (x and y centroid coordinates) or 1D coordinates (x or y centroid coordinates). 

When processing data in 2D perspective, the cluster application works in the same way for all devices in the second group. 
However, in a 1D perspective, it is necessary to pay attention to the devices under analysis, if all the measures present on the screen of a 
blood pressure monitor are horizontally aligned, or, in the case of the oximeter, they may be aligned horizontally or vertically. Fig. 2 
explains this situation. 

At first, the 2D perspective seemed to be better, as it is compatible with all devices, however, a problem was found that is directly 
related to the 7-segment digit screens. On these screens, the digits are displayed in specific places, so there is no adjustment for the 
distance between them. In this way, the digit ‘1’ appears aligned to the right, presenting a greater distance in relation to the digits to its 
left and smaller to the right. On the other hand, the acronyms are sometimes far from the digits corresponding to the same value, 
despite being aligned horizontally or vertically. 

3 https://pjreddie.com/darknet/yolo/(2021).  
4 https://www.kaggle.com/code/dimitriosroussis/svhn-classification-with-cnn-keras-96-acc/notebook (2021). 
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3. Results 

3.1. Object detectors 

As previously mentioned, the models were tested in three different situations: one label object detection, 2 label object detection 
(numbers or units) and 15 labels detection (each digit and unit, individually). The performance measures, per object, for the YOLOv3, 
SDD 320 × 320 and SSD 640 × 640 models are shown in the Tables Tables 6 and 7, respectively, and the total are shown in the 
Tables Tables 8, 9 and 10. These measures were computed with an Intersection over Union (IoU or Jaccard Index) average threshold of 
0.5. 

The SSD 320 × 320 model stands out from the rest given the low values for recall and accuracy, resulting in a low F1- score. 
Regarding YOLOv3 and SDD 640 × 640, are the ones with more comparable results but with YOLOv3 having more consistent across all 
metrics. 

3.2. Classifier 

Regarding the classifier, Fig. 3 shows the loss and accuracy evolution during this model training. To make it fit on a mobile device, 
the model was converted to TFlite and quantized. After this process, a 75% lighter model was obtained (from 2123 KBs to 548 KBs) 
with an accuracy of 96.99%. 

3.3. Object detector with classifier 

This topic presents the results of the object detection models, trained for 1 and 2 labels, in series with the classifier. Although the 
two methods presented good results individually, in series we obtained worse results, as can be seen in Tables 11 and 12, per object, 
and total in Tables 13 and 14. 

4. Discussion 

Regarding the three object detection models as well as the three different conditions in which they were tested, it allowed to obtain 

Table 4 
Training steps and final average loss.   

1 Label 2 Labels 15 Labels 

Steps Loss Steps Loss Steps Loss 

YOLOv3 4k 1284 4k 1328 21k 1632 
SSD 320 × 320 50k 0,340 50k 0,344 50k 0,424 
SSD 640 × 640 58k 0,293 56k 0,291 56k 0,332  

Tables 5 
15 class CNN Classifier Architecture.  

Layer type Output Shape Param. Count 

Reshape (32, 32, 1) 0 
Batch Normalization (32, 32, 1) 4 
Conv2D (32, 32, 1) 320 
Max Pooling 2D (16, 16, 32) 0 
Dropout (16, 16, 32) 0 
Conv2D 1 (16, 16, 64) 18,496 
Batch Normalization 1 (16, 16, 64) 256 
Conv2D 2 (16, 16, 64) 36,928 
Max Pooling 2D 1 (8, 8, 64) 0 
Dropout 1 (8, 8, 64) 0 
Conv2D 3 (8, 8, 128) 73,856 
Batch Normalization 2 (8, 8, 128) 512 
Conv2D 4 (8, 8, 128) 147,584 
Max Pooling2D 2 (4, 4, 128) 0 
Drop out 2 (4, 4, 128) 0 
Flatten (2048) 0 
Dense (128) 262,272 
Drop out 3 (128) 0 
Dense 1 (15) 1935 
Total parameters: 542,163 
Trainable parameters: 541,777 
Non-trainable parameters: 386  
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Figs. 2. 1D and 2D cluster.  

Table 6 
Accuracy and recall, per object, of object detection models for 2 labels (0.50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3  

Precision Recall Precision Recall Precision Recall 
Digits 0,9080 0,5017 0,9723 0,7300 0,9397 0,8852 
Acronyms & Units 0,9000 0,2722 0,9501 0,6345 0,9130 0,8365  

Table 7 
Accuracy and Recall, per object, of the Object Detection Models for 15 labels (0.50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision Recall Precision Recall Precision Recall 

Zero 0,9650 0,3252 0,9705 0,6679 0,8631 0,8925 
One 0,9458 0,2861 0,9724 0,5893 0,9129 0,8754 
Two 0,9272 0,3373 0,9169 0,6548 0,8996 0,8938 
Three 0,9787 0,4323 0,9701 0,7159 0,9346 0,8919 
Four 0,9710 0,6055 0,9694 0,8528 0,9430 0,9542 
Five 0,9217 0,4422 0,9163 0,7423 0,9263 0,9003 
Six 0,9694 0,5183 0,9624 0,7710 0,9356 0,8927 
Seven 0,9716 0,5066 0,9776 0,7668 0,9554 0,8855 
Eight 0,9617 0,3837 0,9558 0,6896 0,9010 0,8712 
Nine 0,9640 0,4709 0,9627 0,7667 0,9295 0,9046 
Pulse 0,8994 0,0879 0,9475 0,5487 0,8663 0,9300 
Glycemic 0,9586 0,4908 0,9550 0,7207 0,9437 0,8897 
Systolic 0,9304 0,2172 0.9662 0,6450 0,9227 0,9371 
Diastolic 0,9280 0,1899 0,9658 0,6102 0,9122 0,9474 
SpO2 0,9752 0,2730 0,9270 0,7920 0,8871 0,8986  
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interesting results. It is necessary from now to highlight the SSD 320 × 320 for the poor results compared to the others. Looking at the 
architecture of this model, the input resolution of the images is lower than that of the rest, so the images may have lost some infor
mation after resizing. 

Regarding the three conditions in which the models were trained, for single label, double label and fifteen labels, no significant 
differences were detected in their performance. The models were able to handle numerous objects with different characteristics for the 
same class as well as a greater number of classes that they had to identify. 

On the other hand, the results of the object detectors in series with the classifier were less than expected. It is thought that the small 
irregularities and shifts of the bounding boxes generated by the object detection models may have significantly influenced the CNN 
results. 

To choose the object detection model, it was necessary to be aware that the project we are developing has as its focus running on 
mobile devices. The models cannot remain in the raw state as they are in after training. These need to be compressed to run on this type 
of device, which consists of converting to “.tflite” format as well as metadata indexing (model information, inputs and outputs such as 
tag mapping). SSD models offer greater compatibility in this transfer to a mobile environment compared to YOLOv3. By analyzing the 
results, despite the YOLOv3 presenting a better performance, the choice of the final model that would be integrated in the application 
was the SSD 640 × 640 for fifteen labels. We think that the difference between the performance of the two models does not justify the 

Table 8 
Object detector model for 1 label (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision 0,9011 0,9710 0,9450 
Recall 0,4709 0,7086 0,8748 
F1-score 0,6186 0,8193 0,9085 
Accuracy 0,4478 0,6940 0,8324  

Table 9 
Object detector model for 2 label (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision 0,9073 0,9691 0,9356 
Recall 0,4659 0,7152 0,8777 
F1-score 0,6157 0,8230 0,9057 
Accuracy 0,4448 0,6993 0,8277  

Table 10 
Object detector model for 15 label (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision 0,9555 0,9639 0,9140 
Recall 0,3386 0,6887 0,8993 
F1-score 0,5000 0,8034 0,9066 
Accuracy 0,3350 0,6760 0,8425  

Fig. 3. Loss and accuracy evaluation of the classifier training.  
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Table 11 
Accuracy and Recall, per object, of the Object Detector Model for 1 Label with Classifier (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision Recall Precision Recall Precision Recall 

Zero 0,8606 0,3641 0,9364 0,6081 0,8899 0,6509 
One 0,7462 0,2468 0,9005 0,4091 0,8557 0,4937 
Two 0,9237 0,3678 0,9673 0,5743 0,9642 0,6303 
Three 0,8285 0,4609 0,9082 0,6525 0,8379 0,7197 
Four 0,9537 0,4024 0,9869 0,5202 0,9691 0,5355 
Five 0,9302 0,4839 0,9686 0,7026 0,9542 0,7343 
Six 0,9625 0,5062 0,9651 0,6629 0,9713 0,6735 
Seven 0,8662 0,4233 0,9561 0,5780 0,9225 0,5397 
Eight 0,3646 0,4904 0,4034 0,7050 0,3193 0,8519 
Nine 0,7054 0,4992 0,7696 0,6917 0,6952 0,7526 
Pulse 0,8011 0,0928 0,9398 0,2829 0,8546 0,3413 
Glycemic 0,6153 0,3868 0,7168 0,5424 0,6159 0,6372 
Systolic 0,9085 0,2031 0,9434 0,4660 08889 0,5539 
Diastolic 0,7103 0,2259 0,8060 0,5233 0,6770 0,6622 
SpO2 0,4172 0,3033 0,5385 0,6360 0,3105 0,5685  

Table 12 
Accuracy and Recall, per object, of the Object Detector Model for 2 Labels with Classifier (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision Recall Precision Recall Precision Recall 

Zero 0,8645 0,3584 0,9300 0,6044 0,8797 0,6515 
One 0,7536 0,2426 0,8896 0,4112 0,8249 0,4750 
Two 0,9357 0,3689 0,9642 0,5750 0,9626 0,6245 
Three 0,8269 0,4642 0,9055 0,6517 0,8376 0,7197 
Four 0,9561 0,3982 0,9834 0,5137 0,9602 0,5367 
Five 0,9301 0,4806 0,9681 0,7039 0,9526 0,7302 
Six 0,9584 0,5062 0,9717 0,6647 0,9703 0,6567 
Seven 0,8780 0,4199 0,9543 0,5841 0,9055 0,5265 
Eight 0,3756 0,4880 0,4005 0,7092 0,3054 0,8501 
Nine 07186 0,4907 0,7625 0,6936 0,6825 0,7422 
Pulse 0,8261 0,0934 0,9270 0,3005 0,8472 0,3355 
Glycemic 0,6284 0,3946 0,7066 0,5552 0,5890 0,6061 
Systolic 0,9092 0,2049 0,9351 0,4723 0,8834 0,5469 
Diastolic 0,7324 0,2187 0,8024 0,5384 0,6603 0,6396 
SpO2 0,3893 0,2652 0,5517 0,6516 0,2903 0,5624  

Table 13 
Object detector model for 1 label with classifier (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision 0,7214 0,7808 0,6596 
Recall 0,3742 0,5721 0,6120 
F1-score 0,4928 0,6604 0,6349 
Accuracy 0,3552 0,5598 0,5831  

Table 14 
Object detector model for 2 label with classifier (0,50IoU).   

SSD 320 × 320 SSD 640 × 640 YOLOv3 

Precision 0,7798 0,7800 0,7021 
Recall 0,5769 0,5769 0,6608 
F1-score 0,6632 0,6632 0,6808 
Accuracy 0,5635 0,5636 0,6209  
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agility which the SSD 640 × 640 offers when being transported to a mobile environment. 

5. Conclusion 

In this paper we presented a framework to detect and recognize measures from five different medical devices: glucometers, scales, 
thermometers, blood pressure monitors, and oximeters. 

The developed dataset is not made completely public given it contains images from company catalogs, that have copyright issues. 
Nevertheless, the authors would be happy to share it with other researchers, when contacted directly. 

Furthermore, all the methods that make up the proposed intelligent scanning system were successfully validated. In this way, it was 
possible to determine the best technologies that will integrate the Mobile Application Library for Smart Scan of Medical Device 
Displays that will be developed. As future work, there is room to refine the methods covered as well as the dataset, however the added 
value will consist of transporting the system developed in this paper to a mobile environment, as well as testing it by a group of 
volunteers. 
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