
Agent-based terrain generation: comparing
sequential vs concurrent approaches

Inês Oliveira
School of Technology

IPCA*
Barcelos, Portugal

a17978@alunos.ipca.pt

Madalena Barros
School of Technology

IPCA*
Barcelos, Portugal

a19180@alunos.ipca.pt

Alberto Simões
2Ai, School of Technology

IPCA*
Barcelos, Portugal
asimoes@ipca.pt

Duarte Duque
2Ai, School of Technology

IPCA*
Barcelos, Portugal

dduque@ipca.pt

Abstract—This paper explores the benefits of a concurrent
implementation of an agent-based terrain generation tool, in-
spired by the work of Doran and Parberry [1]. In the present
work, a Unity plug-in was developed for both the concurrent
and sequential approaches. In the sequential approach, each
agent is executed in turn, while in the concurrent version, a
thread is created for each agent. The tests showed a significant
performance increase in the concurrent approach.

Index Terms—Concurrent, Terrain, Agents, Generation

I. INTRODUCTION

For a better understanding of the structure of terraforming
using agents, it was important to analyse two articles based
on the same project. The first was written by Noor Shaker,
Julian Togelius and Mark J. Nelson which was based on the
project developed by Jonathon Doran and Ian Parberry, and
it allowed for an understanding of the purpose of the agents
themselves and the benefits of using them. The other, written
by Jonathon Doran and Ian Parberry, showed and explained
the development of the six types of agents that are needed for
the generation of an environment [1, 2].

II. TERRAIN

This Unity plug-in generates a mesh from a heightmap that
is created through a sequence of agent-based generation steps,
using a list of at most 4 billion points. With the intent of
giving more control to the designer on how the heightmap is
created, the complete generation process is based on random
values generated in relation to a given seed that is set to each
agent. This makes it easier for the designer to keep a good
result, while changing some parameters. During a sequential
run, each agent runs on its own turn, while in parallel, a thread
is created for each agent. Note that each generation step is still
ran sequentially.

A. Coastline Agents

The only objective of the coastline agent is to create the
silhouette of the island, which makes it essential, since the
next agent depends on the points from the coastline to generate

*IPCA - Polytechnic Institute of Cavado and Ave
This project was funded by Portuguese national funds (PIDDAC), through

the FCT – Fundação para a Ciência e Tecnologia and FCT/MCTES under the
scope of the project UIDB/05549/2020.

the landmass where all the other agents will work. To make
the silhouette more organic, a algorithm for randomness was
added, which is the main reason why these agents use the
A⋆ algorithm. After all of the agents finish their execution,
the coastline points are reordered and stored to a temporary
structure to be used by the next agents. In the concurrent
implementation, a thread is created for each agent and a set
of parameters is passed to them that includes the random seed
and the maximum and minimum height to which it must move
the points.

B. Flood Agents
These agents use the flood fill algorithm in order to fill the

space on the grid. Afterwards, they are added to a queue as
they move to the next point, always raising to a specific height
and adding them to the landmass points that will be saved
to the heightmap grid structure. Then, the agents are placed
inside their respective area. The agent will raise the points to
the height set by the designer and add those modified points
to a list.

C. Mountain Agents
Mountain Agents are randomly spawned inside the land-

mass. Each agent moves to a random neighbour that belongs
to the landmass and raises that point and all the neighbours
that respect the same conditions. These points will be added
to the mountains lists, so that it is possible to apply smooth
and noise in an independent way. For the threads, at each step
the agent does, it checks all the neighbours inside a loop. At
each neighbour with an odd index in the loop it raises it to
the maximum defined by the designer while the even ones are
kept at the minimum. This technique allows a more irregular
result to be obtained.

D. Hill Agents
Hill Agents are structured very similarly to the Mountain

Agents, but their goal is to create hills. The designer will define
the number of agents that he wants to use, where each one of
them will be in charge of creating one hill, not necessarily
meaning the end result will present the exact same number of
hills as agents since they can end up merged, giving a more
organic look. The base of preparing the threads is exactly the
same as the Mountain Agents.



E. Beach Agents

The basic behavior of the Beach Agents is similar to the
Hill and Mountain Agents. They depend on tokens, and they
will move through the coastline, creating beaches along the
way. The amount of height change decreases as new points
are visited. This process guarantees that no points from the
mountains are visited. Once they run out of tokens for the
landmass walk, they return to the very next point on the
coastline and restart the process until they run out of tokens
again.

F. River Agents

These agents use the A⋆ algorithm to find a path from a
random point on the bottom of the mountains and a point
belonging to the coastline. It stops once it finds the target
coastline point or if it happens to find another river point on
the way. At each step it will randomly decide if it moves
to a random possible neighbour or to the one that ensures
the shortest path to the target position. The A⋆ pathfinding
algorithm is used to avoid going through the mountains on its
way to the coastline. The agent starts by choosing a random
point that belongs to the bottom of the mountains as the initial
position and an accessible coastline point as the final position.

G. Lake Agents

The number of Lake Agents picked by the designer de-
termines the amount of lakes to be created. These agents
start after the rivers are created and are randomly spawned
on the landmass, avoiding proximity to rivers or mountains.
After that, they start a random walk around that starting point,
lowering the points, adding them to their own lake list, and
then reducing walk token count. Once they run out of walk
tokens, they return to the starting point, remove a restart
token and restart the process until the amount of restart tokens
reaches zero.

H. Smooth Agents

The Smooth Agents are the last ones running and are the
ones that make all the modified points merge in a more
organic way. They visit a list of points a certain amount of
times, respecting their order. At each point, they calculate
the height average of the current point and its neighbours,
always giving more strength to the current one so that the
smoothness does not completely change the terrain. When
working sequentially, this agent is called right after each agent
terminates its job. However, when the concurrent mode is
activated, it is called after all the other agents from all the
other types are terminated.

III. TESTS

In order to facilitate performance testing of our agents, it
was decided to use a checkbox, at the top of our plug-in,
where it is possible to choose whether to test simultaneous or
sequential mode. For this, a computer with an Intel® Core™
Processor i7-6700HQ CPU @ 2.60GHz and 16 GB of RAM
was used. The evaluation was divided into two categories:

the Sequential Mode and the Concurrent Mode, where it was
written down the processing time of the execution of each
agent individually and when all agents were working at the
same time (Table I).

TABLE I
AGENTS PERFORMANCE TESTS

Agents Sequential
Time

Concurrent
Time

Coastline (with smooth) 15 sec. 1 sec.

Flood (with coastline and smooth) 240 sec. 36 sec.

Mountain (with coastline, flood and smooth) 240 sec. 34 sec.

Hill (with coastline, flood and smooth) 240 sec. 44 sec.

Beach (with coastline, flood and smooth) 240 sec. 42 sec.

River (with coastline, flood, mountain and
smooth) 240 sec. 60 sec.

Lake (with coastline, flood and smooth) 240 sec. 40 sec.

With every Agent 240 sec. 120 sec.

IV. CONCLUSIONS

Despite this project being based on the work of Doran and
Parberry [2], we were able to achieve our goals, creating a
tool that allows the designers to generate random terrain and
still have fairly good control over the result. Coastline, Flood,
Hills, Mountains, Beach, River, Lake and Smooth agents are
the ones that we consider to be the core of a good terrain
building tool. Agents-based terrain generation has definitely
its perks and, from a user perspective, the most noticeable
is making it possible to have a really good control of the
results. We developed an option for concurrent mode prepared
to be as fast as possible, making it very close to the speeds
obtained by noise generation tools. Comparing the sequential
and concurrent results, the generation achieved 4 minutes and
2 minutes, respectively, in a 512× 512 heightmap. There is a
lot of room to improve in terms of generation speed, namely
by polishing the code and also searching for better parallel
algorithms than the ones currently in use.

The project is open source and can be visited in this
Dropbox link1.

REFERENCES

[1] Doran, J., & Parberry, I. (2010). Controlled procedural
terrain generation using software agents. IEEE Transac-
tions on Computational Intelligence and AI in Games,
2(2), 111–119. https : / / doi . org / 10 . 1109 / tciaig . 2010 .
2049020

[2] Shaker, N., Togelius, J., & Nelson, M. J. (2016). Frac-
tals, noise and agents with applications to landscapes.
Procedural Content Generation in Games Computational
Synthesis and Creative Systems, 57–72. https://doi.org/
10.1007/978-3-319-42716-4 4

1The source code can be downloaded from https://www.dropbox.com/s/
vrrus17z6tvbvw6/AgentBasedTerraforming.unitypackage?dl=0


