
SplineAPI: A REST API for NLP services

Nuno Vieira, Alberto Simões, and Nuno Ramos Carvalho

Centro Algoritmi — Universidade do Minho — Portugal
nunovieira220@gmail.com, ambs@ilch.uminho.pt, narcarvalho@di.uminho.pt

Abstract. Modern applications often use Natural Language Processing
(NLP) techniques and algorithms to provide sets of rich features. Re-
searchers, who come up with these algorithms, often implement them for
case studies, evaluation or as proof of concepts. These implementations
are, in most cases, freely available for download and use.

Nevertheless, these implementations do not comprise final software pack-
ages, with extensive installation instructions and detailed usage guides.
Most lack a proper installation mechanism and library dependency track-
ing. The programming interfaces are, usually, limited to their usage
through command line, or with just a few programming languages sup-
port.

To overcome these shortcomings, this work aims to develop a new web
platform to make available a set of common operations to third party
applications that can be used to quickly access NLP based processes.
Of course this platform still relies on the same tools mentioned before,
as a base support to specific requests. Nevertheless, the end user will
not need to install and learn their specific Application Programming
Interfaces (API). For this to be possible, the architectural solution is to
implement a RESTful API that hides all the tool details in a simple API
that is common or, at least, coherent, across the different tools.

Keywords: Natural Language Processing, REST API, web service, DSL

1 Introduction

Natural Language Processing (NLP) techniques are being used in very dif-
ferent types of applications.

Some companies are mining social communities to find out what their cus-
tomers think about their products or services [3]. Others are making their infor-
mation available in different languages by using machine translation techniques
[9]. Newspapers and other news agencies, are using NLP techniques to summarise
news and cluster them by specific areas, or based on their similarities [5].

Any one of these applications require a stack of NLP tools to work. This stack
can be very different from tool to tool, but might include common tasks like:
language identification, text segmentation, sentence tokenization, part of speech
tagging, dependency parsing, probabilistic translation, dictionaries querying, or
named entity detection, just to mention some [6].

Although there are some NLP toolkits that include a good number of tools
for most of these tasks [4, 1], developers are likely to need other tools that are
not directly available. This leads to the installation of different tools. If the
developers need to support a wide range of languages, this list of tools is prone
to grow, as some tools are not language independent or because they do not
include training data for some of the required languages.

These requirements lead to the need of installing a variety of tools to have a
complete NLP stack. Unfortunately, most of these installations are not as simple
as they should be, as most of their developers are more interested in using the
tools and adding new features than to document their usage and installation,
or to provide good installation procedures. This leads to the need of dealing
with different kinds of installation problems, and to learn each tool application
programming interface (API).

Although our NLP team is small, we have been dealing with this problem for
some time, and therefore, we are proposing a tool and a service to hide all these
details from the end-user, making these libraries available as web services based
in the REST philosophy. Of course that, if the web services are, themselves, using
those same tools, someone will need to deal with the installation procedure, and
will need to learn its usage. But if this process could be done only once, and the
installed tools are available as a simple web service, application development is
faster, and application deployment gets easier.

As a side benefit, having a different server running some tools, helps in dis-
tribution. Even if at the moment we have the system working on a single server,
it is simple to distribute the tools between different machines.

Nevertheless, the process of making these tools available through a web ser-
vice is not straightforward, as one needs to deal with timely processes, that can
not be served easily using a single HTTP request, given timeouts; problems on
service abuse; problems on load distribution, and others.

In this paper we present SplineAPI, that is both a service, that we are making
available for free, and a platform, for anyone to replicate this kind of service in
their own servers. Section 2 will compare our proposal with other services already
available on the Web. Section 3 includes a presentation of our design goals as
well as the SplineAPI architecture and implementation. Section 4 concludes with
future work.

2 Related Work

The idea to make APIs available through web services is not new. There are
several platforms that make NLP processes available online, each with its own
characteristics and targeting different kinds of users. They range from simple
tools that allow a single kind of task to be performed, to fully featured sites
with a diverse set of functionalities.

In this section we compare our main goals with some of the tools already
available. We focused mainly on tools that have more similarities with our ap-
proach. Therefore, we are looking mainly to tools that include more than one

kind of task and targeting more than one type of user. Then, we looked up their
popularity.

The main differences from the analysed platforms and our main goals are:

– some of the platforms are not NLP specific, like Mashape. They just work
like a proxy that hides some of the web-services requirements (like user au-
thentication and quota management). Nevertheless, there is no information
about how the real service is implemented, and if its architecture is generic
enough to be configured for other requirements;

– other platforms, like Text-Processing, although allow different types of ser-
vices, all of them are based on one single tool (in this case, NLTK). Again,
no information is given on the system implementation and how it can be
adapted to other tools, and in specific, for functionalities not available in
NLTK.

– and finally, mono-application services. Some are available together in a sim-
ilar place, like CORE API by TextAlytics but there is no integration or
homogeneity between the different offered services.

During the development of SplineAPI our main goal is to have an extensive
system, to be used by anyone interested in offering Web Services, that can be
easily configured and monitored.

3 Design Goals and Architecture Details

The main goal is to create a solution that minimizes the challenges develop-
ers face, when trying to take advantage from a large set of NLP tools already
available.

In today’s connected world, applications are no longer running only on the
client machine. Also, they are no longer running only server-side. They are dis-
tributed, both on the client machine, server machine and others that might help
in the process.

Therefore, our goal is to help the conversion of NLP tools into web services.
Although the tool installation may be a challenge, the administrator of these
services needs to deal with it, we intend to make the API construction easy,
recurring to a set of Domain Specific Languages (DSL).

With the idea of creating a web API, it was necessary to think what is the
best implementable architecture to develop this idea. The easiest and the cleanest
method, to make available all the NLP tools, is to build a web service. Inside
the web service world, there are various options of architectures, depending on
how do we want to provide the service. The most popular are: Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST), each one
with its own advantages and disadvantages depending on the objective in mind.
When it comes to SplineAPI, the obvious choice was REST [2, 8].

REST is more and more popular, and the best benefit it offers, is the opti-
mization for stateless interactions that, in this case, is an essential feature, be-
cause the platform handles specific requests and responses based on text data,

and that, does not require a connection status. To the users, REST is the sim-
plest way to query a service because it is less verbose and easy to understand,
as it bases its interaction with the clients in well known HTTP commands.

With the platforms’ architecture decided, it was then fundamental to inves-
tigate the best way of developing all the connections between the tools and the
service, and the software technologies needed to make everything work.

3.1 Spline Architecture

Figure 1 shows our solution architecture. The server is composed of three
main components: the Spline REST server, the NLP tools and their interface
definitions, and a quota database.

NLP
Tool

Tool
Definition

File

Quota

Spline
REST
Server

Internet

Client

Client

Client

Client

Fig. 1. Spline architecture.

NLP Tools and Definition Files Different NLP tools communicate in dif-
ferent ways with the user. Some tools are command line applications that read
information from a file, or from the standard input, and produce results in an-
other file, or into the standard output. Some other are library-based, meaning
that they expose an API that can be used in order to process information and
obtain a desired output.

In order to be able to tackle with these different aspects of tools, each tool
interface is described in an XML file.

This XML file is processed and a Perl module is created. This Perl module
is responsible for the interaction with the Spline REST server, as is detailed in
Section 3.2.

Listing 1.1. XML example for the Tokenization Service based on FreeLing Perl library.

<s e r v i c e>
<meta>

<t o o l>FreeLing</ t oo l>
<name>Tokenizer</name>
<route>t ok en i z e r</ route>
<parameters>

<parameter r equ i r ed=”1” name=” text ”>
<de s c r i p t i o n>The text to be token ized</ d e s c r i p t i o n>

</parameter>
</parameters>
<d e f i n i t i o n>

Process o f breaking a stream of text up in to tokens .
</ d e f i n i t i o n>
<co s t>1</ cos t>

</meta>
<implementation>

<packages>
<package>FL3 ’ pt ’</package>

</packages>
<main lang=” pe r l ”>

my $ pt tok = Lingua : :FreeL ing3 : :Token i z e r−>new(”pt”) ;
my $ tokens = $pt tok−>token i z e ($ text , t o t e x t => 1) ;
r e turn $ tokens ;

</main>
</ implementation
<t e s t s>

<t e s t>
<param name=” text ”>I w i l l be token ized .</param>
<code>

ok ($ r e su l t −>[0] eq ’ I ’ , ”Test the f i r s t word”) ;
</code>
<code>

ok ((s c a l a r @{$ r e s u l t }) == 5 , ”Test the r e s u l t l ength ”) ;
</code>

</ t e s t>
</ t e s t s>

</ s e r v i c e>

The XML structure follows a XML Schema that allows the validation of the
XML file. It also defines the domain of specific elements and attributes, which
allow easy verification on the XML semantics.

Listing 1.1 presents an example of an XML definition file. It describes the
interface for a tokenization service based on FreeLing [7] library.

The XML file is composed by three main parts:

– The meta-data for the service includes its name, the back-end tool and the
service route (basically, the path used for the service URL). It also includes
a brief explanation of the service goals, the service usage cost (if applicable)
as well as which parameters should be used in order to request an operation.
Each parameter is described in terms of its name, requiredness and default
values. It also includes a brief explanation of each parameter meaning.
When adding new services we are aware that further options will be needed.
Namely, some services might work by uploading some text files, and in those
case, a special parameter type will be needed to differentiate file parameters
from standard text ones.

– A description of how the parameters supplied by the users will be used
to compute a result. At the moment this is done using Perl code or Bash
commands. In the first case, there are two sections, one describing the Perl
packages that need to be loaded, and another with the code that is executed.
For Bash commands, only the executed code section should be used.

Again, we are aware that for different tools our generator will have different
needs, and therefore this section of the XML definition file might need further
options in the future.

– Finally, the file includes a set of tests that allow the service programmer or
the server administrator to test if all services are working properly. These
tests include an input for the service and a set of assertions over the obtained
output. Again, at the moment these tests are being written directly in Perl,
but we have been working into incorporate a JSON querying language like
JsonPath1 or JSONiq2.

The structure of the Perl module generated from these XML definition files
is presented later, in Section 3.2.

Quota database Although our service is designed to be stateless, meaning
that the service is connection-oriented, we want to record information on service
usage, in order to track users, most used services, and if possible, distribute
different services by different servers, so that highly used services are hosted in
different hardware.

In one hand, each service defines how much a request to it costs. This cost can
be a constant or defined accordingly with the amount of data to be processed.
On the other hand, each client has an amount of quota to be used based on a
cost limit. this quota can differ accordingly with the status of the client or, who
knows, accordingly with a paid plan. Of course there is also the possibility to
turn off quota management completely.

For this to be possible it was created a coin strategy. Each user has a daily
limited amount of coins he can use freely. All the functionalities are different in
their processing time but have a text-based parameter that can be small or big
and, based on that, we stipulated a whole panoply of cost indicators that differ
with the length of the text and the functionality itself. For that to happen, it
was obviously fundamental to create a stateless authentication process to identify
and manage all the users and their requests.

Spline REST server Considering that Perl is a programming language ade-
quate to process textual data, with a great set of interfaces to other programming
languages, it was the chosen language for the back-end server implementation.

1 A XPath like language for JSON, available from: http://goessner.net/articles/
JsonPath/ (Last visited: 15-04-2015).

2 A very complete and expresssive query language for JSON, available from: http:
//www.jsoniq.org/ (Last visited: 15-04-2015).

The server is implemented in Perl, using the Dancer2 Web Framework [10].
The interaction with the NLP tools is done using Perl modules generated auto-
matically from the already mentioned XML Definition Files. These modules are
loaded automatically by the server, making all services available.

The server is responsible for querying the quota database and update it
accordingly with the user requests. When called using the standard HTTP pro-
tocol, it presents common web pages documenting the services that are available
(accordingly with the loaded modules) and their interfaces.

This strategy allows the easy creation of new services, just by creating an
XML definition file, converting it into a Perl Module (and in some cases, some
edition of the generated module) and restarting the web server. The new module
will be loaded and its description and documentation will be made available in
the website automatically.

3.2 Perl Module Generation

As already mentioned, the XML definition file is processed and “compiled”
into a Perl module. The Perl module includes information about the service itself
(namely, the meta section of the XML definition file) and a set of methods that
are used both for configuring the service, and to perform the required operations
to provide the service.

The module generation is template based. The meta-information is converted
into an associative array (hash, in Perl terminology), and the Perl code is em-
bedded in a subroutine.

The generated Perl module can be edited manually, to perform any special
tweaks or improvements that might be necessary.

Listing 1.2 shows the relevant portions of the generated Perl module. Each
module should implement a programming interface (called Roles, in Perl world),
making available functions to access some of the needed data. Some of these
functions have default behaviour, and as such, the code generator creates stub
functions that can be then edited by the user. This means that the XML de-
scription can be used just for the module bootstrap.

The Perl module should also include a main function that will receive the
request in a dictionary, and should return an answer as a Perl structure. This
structure will be then converted into JSON and sent to the client.

In the Perl community a Perl module is, usually, shipped together with a set
of tests. Therefore, the test information available in the XML definition file is
used to generate such tests, like the one presented in listing 1.3.

These tests can be used both for testing the Perl module locally, as well as
to test the production service (in order to guarantee all the services are running
correctly).

Listing 1.2. Module generated by the XML example.

package Sp l ine : : FreeLing : : Tokenizer ;

use FL3 ’ pt ’ ;

my %i n d e x i n f o = (
hash token => ’ t oken i ze r ’ ,
parameters => {

ap i token => {
d e s c r i p t i o n => ”The token to i d e n t i f y the user ” ,
r equ i r ed => 1 ,

} ,
t ex t => {

d e s c r i p t i o n => ”The text to be token i zed ” ,
r equ i r ed => 1 ,

} ,
} ,
d e s c r i p t i o n => ” Process o f breaking a stream o f t ex t up in to

tokens . ” ,
co s t => 1 ,

) ;

sub get token { re turn $ i n d e x i n f o {hash token } }

sub g e t i n f o { re turn \%i n d e x i n f o }

sub c o s t f u n c t i o n { re turn $ i n d e x i n f o { co s t } }

sub param funct ion {
return 0 or 1 depending on the v a l i d a t i o n o f the r eque s t
re turn 1 ;

}

sub main funct ion {
my ($input params) = @ ;
my $tokens = f r e e l i n g t o k e n i z e r ($input params) ;
r e turn encode j son $tokens ;

}

sub f r e e l i n g t o k e n i z e r {
my ($input params) = @ ;
my $text = $input params−>{t ex t } ;
r e turn u n l e s s $text ;

my $pt tok = Lingua : : FreeLing3 : : Tokenizer−>new(” pt ”) ;
my $tokens = $pt tok−>t oken i z e ($text , t o t e x t => 1) ;
r e turn $tokens ;

}

1 ;

Listing 1.3. Tests generated by the XML example.

use s t r i c t ;
use warnings ;
use HTTP: : Tiny ;
use JSON;

use Test : : More t e s t s => 2 ;

my $host = $ENV{SPLINE HOST} | | ’ l o c a l h o s t ’ ;
my $port = $ENV{SPLINE PORT} | | 8080 ;

my %params = () ;
$params{ ap i token } = ’ a token ’ ;
$params{ t ex t } = ’ I w i l l be token i zed . ’ ;

my $got = HTTP: : Tiny−>new−>post form (” http : / / ” . $host . ” : ” . $port
. ”/ t o k e n i z e r ” , \%params) ;

my $ r e s u l t = decode j son ($got−>{content }) ;

ok ($ r e su l t −>[0] eq ’ I ’ , ” Test the f i r s t word ”) ;

ok ((s c a l a r @{ $ r e s u l t }) == 5 , ” Test the r e s u l t l ength ”) ;

4 Conclusions

In this document we present the architecture for a module-based server for
REST services. The motivation for its development is the need to make NLP
related operations available easily, without all the problems that comprise their
usual configuration and installation.

Although the whole framework is ready and some services are already avail-
able (http://spline.di-um.org/) we are aware that different tools will dictate
different problems to manage. In fact, we are already aware of some of the chal-
lenges we will face:

– Some tools need to receive whole files (for example, XML files) that are not
practical to send as a standard parameter. This means the system should
be able to deal with multipart POST encoding. This will be transparent to
the user as most programming languages make that kind of request easy to
perform. Dancer2 Framework makes it simple to manage all the multiple file
uploading required.

– Some other tools take too much time to complete their jobs. This is a problem
because of the typical HTTP timeouts, and because it is not practical to
keep open connections for long periods of time. With that in mind, our
approach will be based on a service worker, that acts on a job queue. When
a lengthy process is requested, the server will add the job in the worker.

At the same time, it will answer the client with a temporary URI where
the service results will be placed. That URI is automatically created with a
JSON file that states the process is in queue, being processed, or complete.
The client can, then, poll the server, knowing at each time the status of its
request. When the job is complete, the URI will be updated with information
about where the results are available (being another JSON file or any other
kind of resulting file). To conduct this task it will be necessary to create a
daemon that manages the queue, on a temporary order, and execute, in the
background, each one of the elements. Each item on that queue is basically
a DSL that indicates the instructions the daemon will run and it will, after
that, update the JSON file with the result information.

Other than these developing challenges we intend to implement in Spline, we
will face other problems as soon as the server starts to be widely used, namely
computational weight and server balancing.

Acknowledgements: This work has been partly supported by FCT - Fundação
para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.

References

1. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE. Gate-
way Press CA (2011)

2. Fielding, R.T.: Representational State Transfer (REST). Ph.D. thesis, Univer-
sity of California, Irvine (2000), https://www.ics.uci.edu/~fielding/pubs/

dissertation/fielding_dissertation.pdf

3. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press (2015)

4. Loper, E., Bird, S.: Nltk: The natural language toolkit. In: Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Volume 1. pp. 63–70. ETMTNLP ’02,
Association for Computational Linguistics (2002)

5. Mani, I., Maybury, M.T.: Advances in automatic text summarization, vol. 293.
MIT Press (1999)

6. Martin, J., Jurafsky, D.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
2nd Edition. Prentice Hall (2009)

7. Padró, L.: Analizadores multilingües en FreeLing. Linguamática 3(2), 13–20 (De-
cember 2011)

8. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web
services: making the right architectural decision. In: Proceedings of the 17th inter-
national conference on World Wide Web. pp. 805–814. ACM (2008)

9. Rychtyckyj, N.: Machine translation for manufacturing: A case study at ford motor
company. In: Proceedings of the 18th Conference on Innovative Applications of
Artificial Intelligence - Volume 2. pp. 1728–1735. IAAI’06, AAAI Press (2006),
http://dl.acm.org/citation.cfm?id=1597122.1597130

10. Sukrieh, A.: Dancer2::Manual - A gentle introduction to Dancer2 (2013), http:
//search.cpan.org/~sukria/Dancer2-0.10/lib/Dancer2/Manual.pod

