
Building a Dictionary Using XML Technology

Alberto Simões1, José João Almeida2, and Ana Salgado3

1 Centro de Estudos Humanísticos, Universidade do Minho, Braga, Portugal

ambs@ilch.uminho.pt

2 Centro Algoritmi, Universidade do Minho, Braga, Portugal

jj@di.uminho.pt

3 Instituto de Lexicologia e Lexicografia da Língua Portuguesa, Academia das

Ciências de Lisboa, Lisbon, Portugal

anacastrosalgado@gmail.com

Abstract

In this article we describe the workflow implemented to convert a dictionary saved as a PDF file
into an XML document and posterior importation into an XML aware database, and the process
to edit, add and delete new entries. The conversion process was challenging given the format of
the PDF file, and the fine grained detail of the XML schema that was used. For that, an iterative
filtering approach was used. To store the dictionary we decided to use an XML aware database
(eXist-DB), that stores each dictionary entry as a separate resource. It can be queried used
a web interface developed using XQuery. The lexicographers can edit entries using the oXygen
XML editor, reading and storing them directly in the database. In order to guarantee incremental
backups, it was defined a mechanism to import the XML database into a GIT repository. Finally,
a couple of programs were created in order to prepare regular reports on the dictionary revision
process, as well as to backup it in a GIT repository.

1998 ACM Subject Classification I.7.2 Document Preparation / Markup languages

Keywords and phrases XML databases, dictionaries, XQuery, PDF files

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.14

1 Introduction

After the release of the Dicionário da Academia das Ciências de Lisboa (DACL) in 2001 [1],
our goal is to recover that work, update the dictionary data and publish it both on the
Internet, as a web application, and as a conventional paper dictionary.

We do not intend to publish the dictionary, or even make it available to the public, as it
is. Our aim is to manually revise the full dictionary, fixing known errors, detecting others,
and including new terms. That is, we want to create a new version of the dictionary to be
made available in the web for free by the end of the next year.

The main problem arose when it was found that the only source for the dictionary itself,
was from a PDF file. 1. There was no time nor money to allow the full transcription of
the document. This required an automated process to recover the data from the PDF file.
In order to achieved this, our previous recovering other dictionaries [3, 5] was crucial, and
allowed this process to be faster.

1 This PDF file was created from a Word document, that was generated from a Microsoft Access file, but
none of these files were still available.

© Alberto Simões, José João Almeida, and Ana Salgado;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 14; pp. 14:1–14:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

14:2 Building a Dictionary Using XML Technology

This process resulted in a text file with font face and size information. Then, a set of
rewriting rules were written, to convert this information into a basic XML structure that
was later enriched using an iterative filtering approach, as we will describe.

The resulting XML was split into smaller documents, one for each dictionary entry.
These documents were later imported into an XML aware database. In this case, we chose
eXist-DB [4].

In order to allow the revision and enrichment of the dictionary, it was needed an interface
or some other mechanism to allow linguists to edit the dictionary records. With that in mind,
we created an application based on XQuery to allow the navigation of the dictionary, and
rendering of links using the XMLDB protocol, that oXygen XML editor2 could understand,
making it possible to edit an entry using a single mouse click.

Finally a set of reporting and export tools were developed in order to monitor the pace
of the dictionary revision, and the export of the dictionary into different formats.

In the next section we will focus on the task of understanding the PDF document format
and exporting it into XML TEI [7]. Follows Section 3 that explains how the dictionary was
imported and indexed into a XML-aware database. Section 4 present the developed tools to
help maintaining and validating the dictionary. Finally, we conclude in Section 5 with some
insights on next steps on the development of the new dictionary.

2 Rewriting PDF into XML

In previous projects we had already applied techniques in order to convert dictionaries
encoded in different formats into some XML schema. Each one of these data conversion tasks
resulted in very different challenges. The same holds true for the PDF format conversion of
the Dicionário da Academia das Ciências de Lisboa.

As described earlier, the PDF file was generated from a Microsoft Word document. The
format is a two column template, using mostly text in a same font-size, but changing its
style, including normal, italic, bold and small capitals. The tools we tried to convert the
PDF to text did not provide satisfactory results:

pdftotext command line utility loses all formatting, which means that all the information
codified as different font styles is completely lost.
pdftohtml as similar problems, including the fact that it also lost all non-ASCII characters,
namely the phonetic transcriptions (using modified IPA) and the etymological information
which could include Greek words. Note that pdftohtml includes an option to output
XML, but it is unable to detect some user-defined fonts. Although not tested, we expect
pdf2xml3 to behave similarly, given it uses, just like pdftohtml, the Xpdf library. It was not
tested as its source code is not prepared for easy installation, lacking the usual configuring
mechanism present on most OpenSource tools4.
OCR tools, like the free Tesseract OCR, and commercial tools, like Omnipage Pro and
Abbyy Fine Reader converted the vectorial PDF files into images, and then tried to
recognize the text. Their results were also far from satisfactory even when using high
quality images. Also, during this process, when specifying Portuguese as the main
language, they would miss the detection of non Portuguese words.

2 https://www.oxygenxml.com/
3 https://github.com/eliask/pdf2xml
4 There are some binaries for the pdf2xml tool in SourceForge, but it is known that SourceForge was

hacked more than once, and therefore binaries available there are not to be trusted.

A. Simões, J. J. Almeida, and A. Salgado 14:3

<text font="KIKNHC+Garamond-Redondo" size="9.548">v</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">o</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">g</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">a</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">l</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548"> </text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">c</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">e</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">n</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">t</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">r</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">a</text>

<text font="KIKNHC+Garamond-Redondo" size="9.548">l</text>

Figure 1 XML as generated by PDFBox to the “vogal central” string.

Apache PDFBox tools5, on other hand, proved to be very effective.. This tool is able to
process a PDF file and generate a (large) XML file, where each character in the PDF file is
encoded into an entity with the typeface and font size, as shown in figure 1. This XML file
takes 2.7GB of disk space, with 28.5 million text tags.

This XML was then simplified, joining all text with he same typeface and font size into
single elements. Then, a list of different pairs (font, size) was created, and mapped to
different tag elements. For the common typeface and font size adding a bold, italic or small
caps were used the elements b, i or sc. For other, less clear strings, other ad-hoc elements
were defined.

A set of rewrite rules were then written in order to process this file and identify what
role each string played in the dictionary, determine what was the entry term, its phonetic
transcription, sense identifiers, synonyms, quotes, etc. The techniques employed here were
similar to the ones applied previously [5].

After this step, our main challenge was the granularity of the desired markup, which was
more fine-grained than in previous works which made the XML processing time step take
too much time. A simple addition of a rewrite rule could make the entire process to take up
to 30 minutes. This kind of approach was hard to maintain, as it was not easy to perform
simple tests. Also,

At some point we noticed that some entries were already correctly formatted, and we
were concerned that writing rules for more complex ones could affect the correct entries. At
this point, we implemented an iterative filtering mechanism. First, the XML file was divided
into multiple files, one for each entry. Then, the following algorithm was applied:
1. define a basic DTD for simple entries;
2. test all single entry files against the DTD and move the valid ones into another folder;
3. include a set of new rules to process the remaining files in order to annotate extra

information;
4. update the DTD to support the new elements and structure, while maintaining the

validity of previous validated files;
5. go to the step 2.

5 https://pdfbox.apache.org/

SLATE’16

14:4 Building a Dictionary Using XML Technology

This approach was quite useful, not only because we guaranteed that new rules would not
damage entries already correctly formatted, but also allowed us to define the minimum
needed DTD: elements, their arity and attributes were added only when there was an entry
needing for them.

In the end, a list of about two hundred entries were not validated by the DTD. At this
point we noticed that most of the errors were related to mistakes (incoherences, mostly) of
the original edition. As the original dictionary was created based on a Microsoft Access
database6 without integrity constraints on the entry contents, it was not possible to guarantee
the quality of the work. Due to this, mistakes that were found after producing the dictionary
Word document were correct manually on the document itself. Also, some characters were
added or removed in order to guarantee some graphical format but, at the same time, break
the consistency with the dictionary entry format that was enforced by the Word document
generation process. These entries were edited manually using a tool developed specifically for
this purpose. This tool allowed the user to edit an entry and save it after being validated.

This iterative process made it possible for all 69,428 entries of this dictionary to be
validated against the created DTD.

3 Indexing the XML dictionary

The obtained dictionary has some errors, such as words broken in two, given the transliteration
not being detected by our previous tools, or some of the phonetic and Greek letters not being
detected. Unfortunately most of these errors will need to be fixed manually.

If we had only one lexicographer working on this dictionary, it could be possible to use a
single file, and allow to edit it at once in an XML aware editor. With the intent of allowing
more than one person to edit the dictionary, and given that the complete dictionary is,
formally, a sequence of the same element (entry), we split the file into 69,428 smaller XML
files. This also allows the editor to open and validate each entry much faster, than analyzing
the full file. In order to allow the better understanding of the discussion that follows, listing 1
presents the content of the dictionary entry for the terms vassoura/vassoira.

A dictionary entry can have more than one headword. As a simple example, the term
“vassoura” (broom) can also be written as “vassoira”. So, it is not possible to rename each
one of the XML files to the term it defines (at least, not for every entry, or we would have
duplicated entries, saved with different names). To suppress this problem, we decided to use
the first orthographic form of the entry. In case of polysemous words (words appearing as
the first orthographic form in more than one entry) we concatenated the word name with
the acception number (separated by an underscore).

This process makes it easier to find an entry. But for some situations it is still difficult.
How will the lexicographer know if a specific word is the first orthographic form of its entry,
or even, if a specific word has more than one meaning registered in the dictionary? Therefore,
we needed to develop a mechanism to allow the lexicographer to search for specific terms,
and looking to their entries’ contents, choose the one to be edited.

Instead of developing an in-house solution for this problem, we decided to give a try with
an XML-aware database. The choice was the well known eXist-DB [4], not just because it is
free and open-source, but also because it has extensive documentation.

Our long term plan is to develop a simple interface to allow the maintenance of the
dictionary, based on the XForms [2] standard. Meanwhile, while that is not possible, and in
order to allow lexicographers to start their work revising the dictionary, we adopted oXygen

6 Unfortunately this database is lost, explaining why all the work on re-engineering the PDF document.

A. Simões, J. J. Almeida, and A. Salgado 14:5

Listing 1 Entry for the word vassoura/vassoira encoded in XML.

<entry [. . .]>
<term>

<orth>vassoura</ orth> <orth>va s s o i r a</ orth>
<pron>v5 s ’ or 5</pron> <pron>v5 s ’ o j r 5</pron>

</term>
<gramGrp>s . f .</gramGrp>
<etym>Do l a t . <mentioned>∗ v e r s o r i a</mentioned> , de <mentioned>ver sus

</mentioned> , part . pas . de <mentioned>ver r ĕ re</mentioned> ’ va r r e r ’</etym>
<sense n=" 1 ">

<def> Utens í l i o domé s t i c o formado por um cabo longo ou curto ao qual é
f ixado , numa das extremidades , um f e i x e de f o l h a s de palma , p ia çaba ,
sorgo , pê l o s na tu ra i s ou a r t i f i c i a i s . . . e que s e rve para va r r e r o l i x o .
<quote type=" example ">O cabo da vassoura part iu−se . Deitou f o r a a vassoura
porque t inha os pê l o s ga s to s .</quote></ de f>
[. . .]
<sense n=" 7 "><usg type=" geo ">Bras .</usg>

<def>Pessoa que ganha sempre ou quase sempre em so r t e i o s , j o go s de
azar . . . </ de f></ sense>
[. . .]
</ entry>

XML Developer7. This choice was backed by the tight cooperation between the developers
of eXist-DB and oXygen. Example of that cooperation is the wizard available to connect to
eXist-DB from oXygen. With some extra work it was also possible to tweak Mozilla Firefox
to open URIs using the oxygen:// protocol. This allows the lexicographers to do a query in
the eXist web pages, search for the entry to edit, and open it with a simple click on a link.

Finally, to make the 69K documents searchable, the eXist-DB collection was configured
to be indexed by Lucene8. Note that Lucene is part of eXist-DB and does not need to be
installed separately. The only requirement is the creation of a configuration file, to enable
full text search, and specifying which elements of the XML documents are to be indexed.
For the dictionary we created two different indexes with two very distinct goals:

The first is an index for the entries’ orthographic form. These index allows the lexico-
graphers to search for a specific term entry. Given the index is only over the content of
an element, it is quite small and efficient.

The second index allows the reverse-search [6] of the dictionary. This type of search
mechanism is quite interesting when analyzing a dictionary, as it allows to search for
entries not by their head word, but using their definition. This index is quite large, as it
contains all the dictionary text.

4 Developed Tools

When choosing eXist-DB to store our XML documents we ended up choosing a complete
solution for web application development. Although the database can be used using different
APIs, like REST or xmldb protocols, eXist-DB suggest users to create applications on top of
it. eXist-DB allows the development of web applications using standard W3C protocols, like
XQuery and XForms. It also includes a full web Integrated Development Editor that allows
the programmer to run queries but also to edit the application code.

7 http://oxygenxml.com/
8 https://lucene.apache.org/

SLATE’16

14:6 Building a Dictionary Using XML Technology

Listing 2 XQuery script to validate the dictionary collection.

xquery ve r s i on " 1 .0 " ;
d e c l a r e namespace va l i d a t e=" h t tp : // ex i s t−db . org /xquery/ va l i d a t i o n " ;

<r epo r t s> {
f o r $doc in c o l l e c t i o n (" /db/academia ")
l e t $ f i l e := fn :base−u r i ($ doc)
re turn < f i l e u r i=" {␣$ f i l e ␣} "> {

va l i d a t e : j a xp −r epor t (doc ($ f i l e) , t rue ())
} </ f i l e>

} </ r epo r t s>

Instead of developing our tools in an external programming language, we decided to test
how far we could go with eXist-DB. Not just for the sake of analysis of the tool, but also for
portability. It would be much easier to port the dictionary application to the final servers if
it uses just one technology.

The next list describes briefly the tools we implemented to help in the management of
the dictionary. Note that some are simple XQuery scripts, to be run in the terminal, while
other are end-user interfaces, developed for the web.

Validator

The first task was the development of a script to validate every entry in the database.
Although eXist-DB supports different kind of validations, we preferred to create a
standalone tool. This allows us to remove liberty points in the schema, turning it more
restrict, and test how many entries would be affected. As simple as this script may seem,
it took some time before it could validate all the collection entries in a reasonable time.
Therefore, listing 2 presents our XQuery script. This script takes about 3 minutes to
validate the 69K entries in a Quad-core Xeon 2.40GHz, outputting an XML document
with existing errors.

Search

As explained before, the lexicographers use a web application to query the dictionary
and obtain the filename where the entry is encoded. This script allows both the search
by an orthographic form (searching entries in the orth element) or doing reverse search
(looking up in every PCDATA section of the XML document). The XQuery script returns
the complete entries, in the original XML format. A Cascading Style Sheet is then
used to make the content adequate to be viewed in a web browser. Figure 2 shows the
vassoura/vassoira entry as presented currently in the web application9.

New entry

As stated earlier, at the moment the lexicographers are using oXygen to edit the dictionary.
To create from scratch a dictionary entry is not a simple thing, specially when the user
XML competences are not strong. To simplify this process, a small XQuery script that,
based on the term, validates if it already exists, and in case it does not, create a boilerplate
XML document in the database, that can then be edited.

List domains

Although lexicographers will review all dictionary entries, before the dictionary publication,
the definitions of some words are prepared by specialists in different areas (like mineralogy
or astronomy experts). For those, the entries are exported as rendered in the browser, so

9 Note that currently the CSS is hiding the phonetic transcription, and that the last part of the entry,
with the diminutive form of the word, is being wrongly considered part of the last definition, and
therefore, appearing in the wrong position.

A. Simões, J. J. Almeida, and A. Salgado 14:7

Figure 2 Entry for vassoura/vassoira as presented to the lexicographer in the browser.

they can validate them. As most of them are elder and prefer not to use the computer,
these lists can be printed. So, a XQuery script was prepared that list all available areas
of knowledge, and allow the visualization of all related entries.

Change reports

Another developed tool is the creation of Changes Reports. This XQuery scripts extract
the entries that were edited or created in the last week, creating a list of these entries.
This script is just a search looking into all documents last write access time.

Backup system

We use a quite original approach for backing up an eXist Database. eXist includes tools
to export an entire collection either as a ZIP file, including all the collection documents,
or exporting these documents to a folder in the disk (or a complete folder structure). To
backup or dictionary we have a regular job, being executed every night, to export the
collection to a folder. Then, this folder is committed to a GIT repository. This allows
us to have a regular backup, but also a quite incremental system (using less disk space),
and easy to replicate (at the moment we are pushing this repository into BitBucket10).

5 Conclusions and Future Work

In this article we presented our approach in the process of reverse engineering a dictionary
published in PDF, in order to convert it to a fine-grained XML document. We discuss not
just the process of reverse engineering (a task that is not new, although it was the first
time we did it from a PDF document), but also why and how we store it in an XML aware
database.

With the goal of making the dictionary available for editing and validation by different
lexicographers, we split the dictionary into various XML documents, one for each dictionary
entry. Also, as the process of searching these documents was not easy, a web application

10 http://bitbucket.org/

SLATE’16

14:8 Building a Dictionary Using XML Technology

was developed to search the document collection, and create links that allow the immediate
access to each file using the oXygen XML Developer editor.

Having the dictionary being edited by lexicographers, a set of other tools required our
attention. For those, we wrote small XQuery scripts that run on top of eXist and allow very
different kinds of resources to be built.

Nevertheless, a set of other scripts need to be developed:
Instead of creating HTML reports of each week work, we intend to create daily and weekly
reports of editions, generated as XML documents, imported into another collection. This
is a very interesting resource to have, in order to monitor the activity in the dictionary,
and having a log on all performed changes.
A paper dictionary can be born, developed, printed and die. But a dictionary to be
available on the Internet needs to be dynamic, allowing the dictionary to evolve following
the language and culture. Editing directly the XML file is versatile, but not easy to use.
So, we expect to develop a user-friendly editor.
Currently our web application is restricted to authenticated users. In the future an open
interface needs to be available to end-users. Although the simple mechanisms to search
for entries are already developed (although restricted), we think there is a couple of other
interesting approaches. For example, the synonyms and antonyms annotation can be
used to present the dictionary as a graph/WordNet-like structure.
Although we will make the dictionary available on-line, we still want to be able to create
other media, like eBooks or even printed books. For that we expect to create a set of
exporting tools.

References

1 João Malaca Casteleiro, editor. Dicionário da Língua Portuguesa Contemporânea. Aca-
demia das Ciências de Lisboa, Verbo, 2001.

2 Micah Dubinko. XForms Essentials. O’Reilly Media, Inc., August 2003.
3 Xavier Gómez Guinovart and Alberto Simões. Retreading Dictionaries for the 21st Cen-

tury. In José Paulo Leal, Ricardo Rocha, and Alberto Simões, editors, 2nd Symposium on

Languages, Applications and Technologies, volume 29 of OpenAccess Series in Informatics

(OASIcs), pages 115–126, Dagstuhl, Germany, 2013. doi:10.4230/OASIcs.SLATE.2013.

115.
4 Wolfgang Meier. exist: An open source native xml database. In Akmal B. Chaudhri,

Mario Jeckle, Erhard Rahm, and Rainer Unland, editors, Web, Web-Services, and Database

Systems: NODe 2002 Web- and Database-Related Workshops Erfurt, Germany, October 7–

10, 2002 Revised Papers, pages 169–183. Springer, Berlin, Heidelberg, 2003. doi:10.1007/

3-540-36560-5_13.
5 Alberto Simões and José João Almeida. Processing XML: a rewriting system approach.

In Alberto Simões, Daniela da Cruz, and José Carlos Ramalho, editors, XATA 2010 – 8ª

Conferência Nacional em XML, Aplicações e Tecnologias Associadas, pages 27–38, 2010.
6 Alberto Simões, Álvaro Iriarte, and José João Almeida. Dicionário-Aberto: Construção

semiautomática de uma funcionalidade codificadora. In Alain Lemaréchal, Peter Koch,
and Pierre Swiggers, editors, Actes du XXVIIe Congrès international de linguistique et de

philologie romanes, Nancy, 15-20 july 2013 2014. ALTIF. Section 16 : Projets en cours;
ressources et outils nouveaux.

7 Edward Vanhoutte. An Introduction to the TEI and the TEI Consortium. Literary and

Linguistic Computing, 19(1):9–16, 2004. doi:10.1093/llc/19.1.9.

	Introduction
	Rewriting PDF into XML
	Indexing the XML dictionary
	Developed Tools
	Conclusions and Future Work

