
Processing and extracting data from an open dictionary

of the Portuguese language

Alberto Simões1, José João Almeida2, Rita Farinha3

1 Escola Superior de Estudos Industriais e de Gestão, Instituto Politécnico do Porto, Portugal
2 Departamento de Informática, Universidade do Minho, Portugal

3 Project Gutenberg, Distributed Proof-readers, Portugal

alberto.simoes@eu.ipp.pt, jj@di.uminho.pt, rfarinhadp@gmail.com

Abstract

Synonyms dictionaries are useful resources for natural language processing. Unfortunately their availability in digital format is limited,

as publishing companies do not release their dictionaries in open digital formats. Dicionário-Aberto (Simões and Farinha, 2010) is an

open and free digital synonyms dictionary for the Portuguese language. It is under public domain and in textual digital format, which

makes it usable for any task.

Synonyms dictionaries are commonly used for the extraction of relations between words, the construction of complex structures like

ontologies or thesaurus (comparable to WordNet (Miller et al., 1990)), or just the extraction of lists of words of specific type.

This article will present Dicionário-Aberto, discussing how it was created, its main characteristics, the type of information present on it

and the formats in which it is available. Follows the description of an API designed specifically to help Dicionário-Aberto processing

without the need to tackle with the dictionary format. Finally, we will analyze the results on some data extraction experiments, extracting

lists of words from a specific class, and extracting relationships between words.

1. Introduction

Dicionário-Aberto1 pretends to be an open and free dictio-

nary for the Portuguese language. To an extent, the main

idea can be compared to Wiktionary2 with some differences

(namely adding a review process to contributed entries).

At the present time the project is still in its beginnings, in-

corporating a base lexicon. As the creation of a full dictio-

nary is colossal and given the lack of funds for this project,

the authors decided to use an old dictionary from Cândido

de Figueiredo, available in paper format at the Portuguese

National Library. This dictionary age (it was published in

1913) puts it under public domain which gives us full per-

mission to use the document for any objective.

Previous work (Simões and Farinha, 2010) presents the de-

tails on the paper dictionary, its problems (the more rel-

evant problems are the fact of being written in Old Por-

tuguese, and the related problem of being out-of-date on

some actual words/definitions), how its transcription was

performed, and what methods are being used to convert the

dictionary into different formats (XML, StarDict, PDF and

others).

At the present moment the transcription is complete and

the text incorporation in the web site is being finished3.

This process took about three years at a constant rate of

200 words added per day. Until the full incorporation is

finished Dicionário-Aberto language will not be modern-

ized (there are already some studies performed to make that

tasks semi-automatic) and it will not be opened to commu-

nity contribution.

Nevertheless, some tools to process the dictionary are al-

ready available and interesting results can be already ex-

1Available from http://dicionario-aberto.net/
2http://www.wiktionary.org/
3The geographic and onomastic appendixes are being im-

ported.

tracted from it. As these methods are dependent on the

document format but not highly dependent on the language

being used, they can be re-applied after the language mod-

ernization take place.

In this article we will focus on this problem: how to use

Dicionário-Aberto to extract words relationships or word

lists, to be used as semantic structures for natural language

processing tasks.

We first summarize the format used to encode Dicionário-

Aberto (section 2.). In section 3. we discuss the API (Ap-

plication Programmers Interface) that was prepared to help

and systematize the dictionary processing task. Section 4.

shows some experiments performed extracting different

kinds of information from Dicionário-Aberto together with

some basic evaluation. We conclude on section 5. with

some insights of Dicionário-Aberto future.

2. Current Dictionary Pipeline

Dicionário-Aberto’s project pipeline begins with the paper

dictionary digitalization, followed by the optical character

recognition and transcription/validation process. This pro-

cess is assisted with different kinds of quality assurance

tests from syntax to completeness checks. This first part

of the process results in a textual format version of the dic-

tionary using a “Project Gutenberg”-like syntax (Founda-

tion, 2009). This syntax is simple but ambiguous. As an

example, it does not contain clear distinction on definition

senses.

To enrich and make the dictionary processing easier, a con-

version process was developed. It rewrites this basic syntax

into an XML format, using simple heuristics and specific

word lists. The chosen XML format is a subset of TEI (Text

Encoding Initiative (Vanhoutte, 2004)) schema for dictio-

naries encoding. An example of a dictionary entry in TEI

format is presented in figure 1. More TEI structure will be

added to the dictionary in the future.

1 <entry>

2 <form>

3 <orth>Cachimbo</orth>

4 </form>

5 <sense>

6 <gramGrp>m.</gramGrp>

7 <def>

8 Apparelho de fumador, composto de um...

9 Peça de ferro, em que entra o espigão...

10 Buraco, em que se encaixa a vela do...

11 </def>

12 </sense>

13 <sense>

14 <usg type="geo">Bras. de Pernambuco.</usg>

15 <def>

16 Bebida, preparada com aguardente e mel.

17 </def>

18 </sense>

19 <sense>

20 <gramGrp>Pl.</gramGrp>

21 <usg type="lang">Gír </usg>

22 <def>Pés.</def>

23 </sense>

24 <etym ori="químb">(Do químb. quixima)</etym>

25 </entry>

Figure 1: Dicionário-Aberto entry encoded in TEI.

For better understanding of the following sections it is im-

portant to summarize the structure of Dicionário-Aberto en-

coded in TEI.

• The dictionary is a sequence of entries:

Dic = Entry⋆

Each entry, as shown in figure 1, contains information

about one word, including different senses.

In some cases lexicographers prefer to separate senses

in different entries (especially when they have differ-

ent grammatical information) and in some other con-

texts prefer to include them on the same entry. This

discussion is not important in this context as TEI can

encode both situations. Dicionário-Aberto’s lexycog-

rapher was responsible for those choices when produc-

ing the original dictionary.

• Each entry is a triple, including the word form, a se-

quence of senses definitions and optional etymology

information:

Entry = WordForm × Sense⋆
× Etymology?

• Word form includes only one mandatory value: one

orthographic word form. It might also include other

orthographic forms and full or partial phonetic tran-

scriptions:

WordForm = OrthcForm⋆
× PhoneticForm⋆

• Word senses have two main fields: the word gram-

matical information (or part-of-speech) and the sense

definition.

Note that a sense might include different but similar

descriptions, that are being separated by a new line.

TEI is not clear if these different descriptions should

be placed in different senses or kept as a single one.

Our approach follows simplicity, putting them as part

of the same sense, but making it possible to split them

in the future.

Word senses might also include some other data, like

domain or geographic usage information.

Sense = GramInfo × Definition × Usage-set

Grammatical information is a non-structured string us-

ing a closed set of abbreviations4.

• Finally, the etymology field at the present moment is

just one non-structured string. In future Dicionário-

Aberto versions it should be bettered.

The full dictionary in XML format takes about 30MB of

disk space, with more than 128 000 entries and 152 000

senses. Processing this XML file using a DOM (Document

Object Model) approach is heavy, given the complexity of

the XML format.

Therefore, with efficiency in mind, the XML file was

spliced in different chunks, one for each entry, that were

inserted in a relational database.

This database has a compound key with the orthographic

form of the word and its homograph number (or 1 if no

homograph is present). A column follows with the entry

encoded in TEI and a final column contains a normalized

version of the term.

The processing API described in the next section uses this

database instead of processing the XML file.

3. Systematic Dictionary Programming API

The main structure of the TEI file is a list of entries. There-

fore, the most convenient way to process this structure is

cycling thought all the entries.

When looking at an entry, we want to have access to the

orthographic forms and to the usage information, but if we

are trying to extract semantic relationships, then we will

want to access the term definition, that is, to the different

senses.

These two kind of approach are the most common on most

data extraction applications. Therefore, our API is mainly

composed by two methods, one prepared to cycle through

entries and the other to cycle through senses.

3.1. Processing Dictionary Entries

There is a common procedure when searching a dictionary:

cycle through all dictionaries entries, looking for the word

and deciding if that word is, or not, relevant towards our

main objectives. This approach is both true when talking

4Tests were run to force coherence on the used abbreviations.

about real world dictionaries and when talking about pro-

cessing automatically a digital dictionary.

Therefore, the provided process_entriesAPI method

has that same behavior: it looks at every word in the dic-

tionary (by default in alphabetic order) and lets the user

specify a function to process its contents.

In the same way that when searching a paper dictionary we

look at the word and decide whether to read or not its defi-

nition, this method also provides such a mechanism. Along

with the code that will process the dictionary entry the user

may supply a set of restrictions about the word. This re-

striction can specify a full word, specify a prefix or suffix,

or just some characters that should be present in the word.

In summary, the process_entries (PE) method5 can

be defined as:

PE : restriction-set, (word × entry → any) −→ any
⋆

Each word can be processed or skipped accordingly with

the process objectives, checking the word (as described

above) or looking into the morphological categories, do-

main or geographic information.

The Dicionário-Aberto API is defined in Perl. While it

might be difficult to read for non-Perl programmers we de-

fend that presenting some code will help to understand how

the API works.

1 $DA->process_entries(

2 {

3 grep_words => qr/ch/,

4 words_like => ’p%’,

5 },

6 sub {

7 my ($word, $entry) = @_;

8 ...

9 }

10)

By default, this method applies the supplied function to all

entries in the dictionary, passing to this function the word

and the full TEI entry (valid XML fragment).

The method allows the user to filter the entries to be

processed. For efficiency purposes it supports two fil-

tering mechanisms: grep_words restricts the process

to words matching a Perl regular expression (slower);

words_like restricts the process to words matching an

SQL-like statement6 (faster).

3.2. Processing Word Senses

The second approach to process the dictionary is inspect-

ing each word sense and processing it independently. This

method is especially useful when the application is search-

ing for a special morphologic property or a special usage

method.

5In this and the following method signatures the dictionary

will not be represented because of the scarce line space and be-

cause being a method it is implied that it will be applied to an

object, in this case, the dictionary.
6It is relevant to have both filtering mechanisms given that

SQL-like is faster than Perl regular expressions, but Perl regular

expressions are more expressive.

Therefore, the process_senses method allows the

same filter mechanisms as the process_entries

method and adds options to filter morphological proper-

ties — grep_morph — and term usage information (ge-

ographic or domain) — grep_usg.

We can specify this method (PS) signature as follows:

PS : restriction-set, proFunction −→ any
⋆

where

procFunction = (word × morph × def × usg → any)

As can be noted in the signature, the user function will not

process the full entry in TEI format, but the word, the mor-

phological information, the definition (note that it might

contain XML tags) and an associative array with usage in-

formation (if any).

1 $DA->process_senses(

2 {

3 ...,

4 grep_morph => qr/adj/,

5 grep_usg => { geo => qr/bras/ },

6 },

7 sub {

8 my ($word, $morph, $def, %usg) = @_;

9 ...

10 }

11)

4. Dicionário-Aberto Data Extraction

The common data extraction task performed over a dictio-

nary is the extraction of relationships for the creation of

semantic structures, like thesauri or ontologies(Oliveira et

al., 2008; Zesch et al., 2008).

In this article we will also extract similar relations from

Dicionário-Aberto, but our main objective is not to defend

our data extraction approach, but to defend the usefulness

of Dicionário-Aberto for natural language processing and

the easiness of this task when using the presented API.

This section includes two case studies. The first is devoted

to the extraction of word lists from specific word classes,

like animals or plants. The second focuses on the extraction

of word relationships.

4.1. Extracting Word Lists

Lexicographers write definitions with a strict structure. If a

word has a sense explaining it is the name of a plant, then

the definition starts with7 “plant that. . . ”, and if it is the

name of a fish, then the definition starts with “fish that. . . ”

While this structure is maintained in most cases, we need to

have in mind that Dicionário-Aberto is one hundred years

old. Therefore, descriptions were written manually and

maintaining coherence between entries was a difficult task.

Nevertheless, we did some experiments for the extraction

of word lists based on this assumption, creating lists of

quadrupeds, fishes, birds, insects, generic animals, plants

and trees. Note that the class animals include some of the

other classes.

7In these examples we will be using a rough translation of the

dictionary entry to make it easier for non-Portuguese readers to

understand our explanations. Full examples will be presented in

Portuguese.

1 my $DA = new DicionarioAberto;

2 $DA->process_senses(

3 sub {

4 my ($word, $morph, $def) = @_;

5 if ($def =~ /^quadrúpede/i) {

6 print QUADRUPEDES "$word\n";

7 print ANIMAIS "$word\n";

8 }

9 if ($def =~ /^(ave|pássaro)\b/i) {

10 print AVES "$word\n";

11 print ANIMAIS "$word\n";

12 }

13 if ($def =~ /^peixe\b/i) {

14 print PEIXES "$word\n";

15 print ANIMAIS "$word\n";

16 }

17 if ($def =~ /^insecto\b/i) {

18 print INSECTOS "$word\n";

19 print ANIMAIS "$word\n";

20 }

21 if ($def =~ /^animal\b/i) {

22 print ANIMAIS "$word\n";

23 }

24 if ($def =~ /^planta\b/i) {

25 print PLANTAS "$word\n";

26 }

27 if ($def =~ /^árvore\b/i) {

28 print ARVORES "$word\n";

29 }

30 });

Figure 2: Script to extract word lists

A simple extraction tool can be developed with a few lines

of code as shown in figure 28. It runs in about 1 minute and

9 seconds on a 2.4GHz Core 2 Duo running Mac OS X.

Table 1 quantifies the number of words extracted for each

class.

class hits precision

quadrupeds 47 98%

fishes 459 96%

birds 742 98%

insects 265 100%

animals 1660 91%

plants 2307 100%

trees 1352 100%

Table 1: Word list sizes

The same table also presents an evaluation on the results.

The third column includes the precision on a hand evalu-

ation task on 100 random elements from the list. Just the

first class (quadrupeds) was evaluated on its totality.

For instance, on the quadrupeds list, the only false positive

is “bêsta” that can be seen as a synonym for quadrupeds,

8Note that the code shown in this article is not supposed to

work by itself, as some details were removed for legibility and

compactness.

but not an instance. The same happens with fishes and

birds, where diminutive or augmentative terms are found.

The word precision drops in the animals class, mainly be-

cause the rule searches for “animal” at the beginning of

the definition,while these definitions (from the set analyzed

by hand) are, mostly, related to animal classification terms

(like “herbivore”).

4.2. Extracting Word Relationships

This section presents a more complex method for extracting

data from a definitions dictionary, that has been used by

other researchers. The idea is similar to the one presented

above, but the patterns are more complex.

The first step consists on detecting and analyzing the pat-

terns that should be used for the extraction task.

Instead of defining ahead the set of relations to be extracted,

based on the common relations used on thesaurus or on-

tologies, we decided to analyze dictionary word sequences9

(n-grams), sort and count them, and find out the most com-

monly used patterns.

Each pattern was associated to a relation or discarded if no

interesting knowledge could be retrieved from it.

Table 2 shows a few of the most occurring and interesting

patterns found, together with the inferred relation10.

pattern relation

o mesmo que synonym

o mesmo ou melhor que synonym

acto ou effeito de effect/cause (noun/verb)

acto de effect/cause (noun/verb)

relativo á|a|ao <NOUN> adjective/noun relation

gênero de hypernym/hyponym

espécie de hypernym/hyponym

aquillo que subject/action

aquelle que subject/action

que não é <ADJ> antonyms

Table 2: Some relevant patterns to extract word relation-

ships.

The extraction tool, written with the defined API, it not

much more complex than the one presented before, as can

be seen on figure3

This example takes about 1 minute and 7 seconds run-

ning and extracting a total of 34 308 relations, divided in

16 038 synonyms, 2 292 cause/effect, 5 361 noun/adjective,

6 992 hypernyms/hyponyms, 3 147 verb/action and 478

antonyms. These values can be raised if the patterns are not

searched in the beginning of the definition but anywhere in

the text. However, this will result in a fewer precision.

Table 3 shows some relations extracted using this tool. An

evaluation similar to the performed in the previous exam-

ple was also conducted for these results. Main problems

found were not related to wrong relations but to incomplete

9This extraction task was also performed using the defined API

in a simple processor that will not be shown here.
10For non English readers follows a rough translation for each

line on the table: the same; the same or better than; act or effect

of ; act of ; relative to; type of ; specie of ; the thing that; the one

that; that is not.

1 my $DA = new DicionarioAberto;

2 my $word = qr/([^_,.;:]+)/;

3 $DA->process_senses(

4 sub {

5 my ($word, $morph, $def) = @_;

6 $_ = $def;

7 if (/^o mesmo (ou melhor)?que $word/) {

8 print "SYN: $word | $1\n";

9 }

10 if (/^acto ou effeito $word/) {

11 print "EFFECT: $word | $1\n";

12 }

13 if (/^relativo (á|ao|a) $word/) {

14 print "ADJ: $word | $2\n";

15 }

16 if (/^(gênero|espécie) de $word/) {

17 print "HYP: $word | $2\n";

18 }

19 if (/^(aquillo|aquelle) que $word/) {

20 print "ACTION: $word | $1\n";

21 }

22 if (/^que não $word/) {

23 print "ANTON: $word | $1\n";

24 }

25 });

Figure 3: Word relationship extraction code.

words, as this simple approach does not have any syntac-

tical help to find out if the word being related is a single

word, multi-word term, or other.

From the 100 word lists analyzed:

• just one relation from the cause/effect list was eval-

uated as wrong: “resaudação/saudação” because the

definition in the dictionary is not precise/complete11.

• three antonym entries are wrong given the lack of syn-

tax knowledge on the extraction tool: “ileso/não é ou

não está leso” “estrangeiro/o é do país em que está”

“impune/não é ou não foi punido”. In these examples

underlined words are the extracted ones.

• remaining lists were considered correct.

5. Conclusions

Dicionário-Aberto shown to be a valuable resource for the

extraction of knowledge for the Portuguese language. The

fact that it is written in old Portuguese can be limiting at

first, but with the proper modernization tool that can be

minimized. Current experiments show that the dictionary

can be modernized to 90% automatically. This value is

pretty promising if we take into account the diversity of

words present (the dictionary includes more than 128 000

entries).

11If while evaluating we only consider the dictionary itself and

not the common knowledge of the language, then all evaluated

cause/effect relations were correct.

relation words

trabalhucar trabalhar

synonyms trafulha trapaça

pélvis pelve

mijo urina

união unir

effect/cause remoção remover

picada picar

topográfico topografia

adjective/noun toireiro toiro

polaco Polônia

taipoca árvore

hyponym/hypernym selenato mineral

elefantina tartaruga

tinhoso sofre tinha

subject/verb surdo não ouve

santidade é santo

raro denso

touro castrado

antonyms material espiritual

claro escuro

canhoto destro

Table 3: Extracted word relationship examples.

The availability of an API to process the dictionary reduces

drastically the time necessary for the tools development,

making it easy to filter entries accordingly with the words,

morphologic or usage information, and center the developer

attention to its main objective.

While the presented experiments are naive they illustrate

both the simplicity of the API use and the relevance and

value of Dicionário-Aberto as a source for lexical and se-

mantic knowledge.

6. References

Project Gutenberg Literary Archive Foundation. 2009.

Project gutenberg. http://www.gutenberg.

org/.

George A. Miller, Richard Beckwith, Christiane Fellbaum,

Derek Gross, and Katherine Miller. 1990. WordNet: an

on-line lexical database. International Journal of Lexi-

cography, 3:235–244.

Hugo Gonçalo Oliveira, Diana Santos, Paulo Gomes, and

Nuno Seco. 2008. PAPEL: A dictionary-based lexical

ontology for portuguese. In PROPOR’08: Proceedings

of the 8th international conference on Computational

Processing of the Portuguese Language, pages 31–40,

Berlin, Heidelberg. Springer-Verlag.

Alberto Simões and Rita Farinha. 2010. Dicionário aberto:

Um novo recurso para PLN. Vice-Versa, (16), April.

forthcomming.

Edward Vanhoutte. 2004. An Introduction to the TEI and

the TEI Consortium. Lit Linguist Computing, 19(1):9–

16.

Torsten Zesch, Christof Müller, and Iryna Gurevych.

2008. Extracting lexical semantic knowledge from

Wikipedia and Wiktionary. In Nicoletta Calzolari (Con-

ference Chair), Khalid Choukri, Bente Maegaard,

Joseph Mariani, Jan Odjik, Stelios Piperidis, and

Daniel Tapias, editors, Proceedings of the Sixth

International Language Resources and Evaluation

(LREC’08), Marrakech, Morocco, may. European Lan-

guage Resources Association (ELRA). http://www.lrec-

conf.org/proceedings/lrec2008/.

