
On the Nature of Programming Exercises1

Alberto Simões2

2Ai, School of Technology, IPCA, Barcelos, Portugal3

https://ambs.zbr.pt4

asimoes@ipca.pt5

Ricardo Queirós6

CRACS, INESC-Porto LA, Portugal7

uniMAD, ESMAD, P.PORTO, Portugal8

http://www.ricardoqueiros.com9

ricardoqueiros@esmad.ipp.pt10

Abstract11

There are countless reasons cited in scientific studies to explain the difficulties in programming12

learning. The reasons range from the subject’s complexity, the ineffective teaching and study13

methods, to psychological aspects such as demotivation. Still, learning programming often boils14

down to practice on exercise solving. Hence, it is essential to understand that the nature of a15

programming exercise is an important factor for the success and consistent learning.16

This paper explores different approaches on the creation of a programming exercise, starting17

with realizing how it is currently formalized, presented and evaluated. From there, authors suggest18

variations that seek to broaden the way an exercise is solved and, with this diversity, increase student19

engagement and learning outcome. The several types of exercises presented can use gamification20

techniques fostering student motivation. To contextualize the student with his peers, we finish21

presenting metrics that can be obtained by existing automatic assessment tools.22

2012 ACM Subject Classification Applied computing → Education23

Keywords and phrases Programming Exercises, Computer Science, Automatic Evaluation, Program-24

ming Challenges25

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2326

Funding This work was partly founded by Portuguese national funds (PIDDAC), through the27

FCT – Fundação para a Ciência e Tecnologia and FCT/MCTES under the scope of the project28

UIDB/05549/2020.29

1 Introduction30

There is an unanimity regarding the difficulties founded in the teaching-learning process of31

computer programming. These difficulties are emphasized mainly in introductory teaching,32

where novice students often lack the knowledge of fundamental programming constructs.33

Another explanation is that students, despite being familiar with the constructs, lack the34

ability of “problem solving” [9]. Other studies focus on social aspects, since novice students35

usually have their introductory programming classes in one of the most difficult periods of36

their life, that is, at the beginning of a higher education course in computer science, coinciding37

with a period of transition and instability in their life. There are even authors who consider38

that the programming courses are not well located in standard computer programming39

degrees curricula [1, 2].40

In recent years, computer programming training environments appeared with the goal41

of helping users to learn programming. The methodology used focus on solving problems42

from scratch. Nevertheless, initiating the resolution of a program can be frustrating and43

demotivating if the student does not know where and how to start. Based on this fact, some44

training environments appeared with the support for skeleton programming which facilitates45

© Alberto Simões and Ricardo Queirós;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (ICPEC 2020).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



23:2 On the Nature of Programming Exercises

a top-down design approach, where a partially functional system with complete high-level46

structures is available. So, the student needs only to progressively complete or update the47

code to meet the requirements of the problem. Despite its promising results, there are few48

environments that vary their exercise types in order to motivate novice students and keep49

them focused.50

This paper starts by presenting the life cycle of a programming exercise: how it is51

formalized, how it is presented to the student and how a student’s solution is evaluated.52

Then, the study explores other ways to challenge the student avoiding the “create from53

scratch” assignment.54

The rest of the paper is structured as follows: Section 2 explores the current state55

regarding programming exercise formalization and evaluation. Follows Section 3 where56

different approaches to construct a programming exercise are analyzed. Finally, the main57

contributions of the paper and possible paths for future developments are presented.58

2 Programming Exercises59

The way a programming exercise is formalized and evaluated is crucial for computer pro-60

gramming practice. In the following subsections we discuss both.61

2.1 Formalization62

Until two decades ago, programming assignments were created and presented to students in a63

ad hoc fashion. The increasing popularity of programming contests worldwide resulted in the64

creation of several contest management systems. At the same time Computer Science courses65

use programming exercises to encourage the practice of programming. The interoperability66

between these type of system is becoming a topic of interest in the scientific community. In67

order to address these interoperability issues several formats to represent computer science68

exercises were developed [6]. As notable examples we can found KATTIS [3], FreeProblemSet1,69

Mooshak Exchange Format [4], PExIL [7] and YAPeXIL.70

The majority of the formats, despite the syntactically differences, adhere to the same logic71

in terms of structure. They are based in a XML manifest file referring several types of resources72

such as problem statements (e.g. PDF or HTML documents), images, input/output test files,73

validators (static or dynamic) and solution implementations. Recently, the YAPExIL, based74

on PExIL, break these similarities changing the serialization format to JSON and supporting75

different types of programming exercises such as solution improvement, bug fix, gap filling,76

block sorting, and spot the bug2.77

In terms of semantics, all the formats allow the inclusion of:78

metadata: data providing information about the exercise. Usually used for discovery79

actions in repositories;80

instructions: text that is presented to the student (e.g., statement, instructions, skeleton81

code). This data is commonly presented to the student in playground (or training)82

environments;83

tests: data which is used by the assessment tools to evaluate the student’s code. The84

most common data in this category is a set of tests (usually as input/output pairs) and a85

working solution;86

1 https://github.com/davideuler/freeproblemset
2 These types of problems will be discussed in depth in Section 3.



A. Simões and R. Queirós 23:3

tools: tools that the author may use to generate data (e.g. feedback and tests generators,87

plagiarism tools).88

In Fig. 1 the four facets and potential tools which will consume the facet data are presented.

Figure 1 Anatomy of a programming exercise.

89

2.2 Evaluation90

The standard way of evaluating a program is to compile it and then execute it with a set of91

test cases, comprised of pairs of input/output files. The submitted program is accepted if it92

compiles without errors and the output of each run is what is expected. This is called of93

dynamic evaluation.94

Another approach, is using static evaluation tools that, instead of executing the student’s95

code and injecting input data, analyzes the code and a predefined set of metrics is computed.96

In this context, the presence of a particular keyword or code block, the style of the code (e.g.97

variable naming convention), the presence of comments or even the application of a certain98

algorithm can be verified. For this type of analysis linters, or other static analysis tools are99

generally used.100

There are several systems that fits on this category such as DOMJudge3, Mooshak4,101

PC25 and DMOJ6.102

Most of these systems are contest management systems in the web. They allow the creation103

of creating problems, whose solutions can be written in different programming languages, and104

have mechanisms to judge automatically the solutions providing (web)interfaces for teams,105

the jury and the general public. Some of them (Mooshak and DOMJudge) also provide a106

REST API to allow their internal functions to be used in other scenarios. All of them are107

free and open source making them easy to adapt for each one needs.108

3 Types of Programming Exercises109

There are different approaches to create a programming exercise, depending on what is asked110

as task for the student, but also in the way the assignment is evaluated and graded. In this111

3 https://www.domjudge.org/
4 https://mooshak.dcc.fc.up.pt/
5 https://pc2.ecs.csus.edu/
6 https://dmoj.ca/

ICPEC 2020



23:4 On the Nature of Programming Exercises

section we will first present the different ways a programming exercise can be presented to112

the student, and what are the main goals of that exercise, and their pros and cons. In some113

cases examples of application will be discussed. It is followed by an overview of different114

ways an exercise can be graded, according to the objective. Finally, we will also discuss115

different ways to give feedback to the students about their performance.116

3.1 Exercise types117

While a programming exercise can be presented in very different ways, there are some that118

are traditional and widely used, while some other are rarely applied. These types of exercise119

not only present a different challenge to the student, but also can be more or less adequate120

for some specific type of evaluation. And, unfortunately, some types of exercises can take121

some time for the teacher to prepare.122

Code from Scratch123

This is the common approach. Easy for the teacher to prepare, as only a statement of a124

problem is needed. A test suite to evaluate the student’s answer is needed just in the case of125

using an automatic evaluation tool.126

For the students, they have a blank sheet, and they will need to code from scratch. In the127

student’s point of view, this is the worst problem situation. Just like a writer or a painter,128

they may have the blank page syndrome. There is no indication of where to start. Students129

can start focusing on the main algorithm to solve the problem, but some students will start130

with the auxiliary/irrelevant code that is needed, and try to focus later (and probably too131

late) in the code that the teacher wants to evaluate.132

In some situations, like when teaching Object Oriented Programming (for example using133

Java or C#), and particularly in the first classes, asking the student to write a static class to134

be able to write a static main function is counter intuitive, and breaks the Object Orientation135

logic.136

Code Skeleton137

To alleviate the blank page syndrome, and make the student focus on the piece of code being138

evaluated, the solution is to present a code skeleton, with some blanks to fill in. These can139

be simple function calls up to complete function or method bodies. Depending on the way140

this type of problem is presented to the student, the main part of the application might be141

hidden, and the student will never see the big picture. While this can seem like a bad thing,142

the fact that the student can focus is a great benefit. The skeleton programs will accelerate143

the beginning of exercises resolution and facilitate their problem understanding. With the144

structure included, students can now focus on the core of the problem and abstract their145

foundations.146

As for the teacher, further work is needed. Teachers will need to write the code skeleton,147

and present the students with a clear interface, knowing exactly what is available at that148

point in the program. For complex exercises, teachers might need to write a full solution149

before being able to understand what pieces of code are to be developed by the student.150

Fill the Blanks151

Similar to the previous approach, but with smaller blank sections. Students will not need152

to write full lines or blocks of code, but rather fill in some portions of it. These blanks can153



A. Simões and R. Queirós 23:5

be open, allowing the student to write whatever they want, or a predefined list, asking the154

students to use one of the provided options to fill the blank.155

This second approach can be interesting if the students do not have the possibility to run156

the code, and are presented with very similar options, that will force to really understand157

what they are performing, without being able to test the code.158

In fact, asking students to solve programming tasks without the ability to compile or run159

their code is relevant, as current compilation times are so fast, that students tend to try all160

the options/combinations possible for a specific algorithm in order to find the right answer161

(brute force programming).162

Code Baseline163

While in the previous approach the teacher will leave concrete instructions on what code164

needs to be written, with a code baseline, students will have access to a fully working solution.165

This working solution might solve the problem for specific values, and students will need to166

work their code to get a better solution.167

This approach is very useful for (but not limited to) teaching how to implement machine168

learning tools. The teacher can include a solution with a precision baseline, asking the169

students to accomplish better.170

Having a fully working solution, students feel more comfortable as they do not need to write171

their code from scratch, and feel empowered, as they have a working solution. Nevertheless,172

to start changing the code to get better results, students will need to understand the provided173

code, and that can be a challenging task, especially if the supplied code is not well documented,174

or the student is not directed to the code function he needs to change.175

As a side benefit from this approach, gamification is implicit. If there is feedback on how176

well the student’s solution is performing, they will quickly try to beat their friends solutions.177

Find the Bug178

In this type of exercise the student is asked to merely find the bug (or bugs) for a presented179

solution. These exercises are used to make students understand an algorithm logic. If the180

students are in a condition where they cannot compile and test the solution, this is a very181

interesting approach, as the student is not asked to fix the code.182

Buggy Code183

Students do not like to rewrite code, trying to make it faster, more elegant, bug free or more184

generic. The “Find the Bug” type of exercise is a good way to force students to read other’s185

code, understand it, and change it. They are provided a buggy solution, and need to fix it.186

The types of bugs introduced in the solution can be of different type accordingly with187

the exercise objectives:188

compilation errors: specific syntactic problems are present, like wrong variable types,189

missing castings, wrong function names, parameter order, etc.190

logic errors: the algorithm has serious flaws, and the student needs to detect them. If191

properly created, these errors can be useful to force the student to understand specific192

details of an algorithm.193

solution errors: the algorithm is mostly working, but have some problems in corner cases.194

This is similar to the “Baseline” approach, but rather than trying to raise the coverage,195

precision or accuracy of the solution, the student is asked to make the buggy code work196

on specific test cases.197

ICPEC 2020



23:6 On the Nature of Programming Exercises

Compiling Errors198

With the spread of intelligent IDEs, students get used to look to the code suggestions, and199

very little to the compiler output. An interesting exercise to force students to look and200

understand how compilers analyse the code, and how they report syntax errors, is to present201

the student with a snippet of code with a syntax error, and the compiler message. This202

would be especially interesting if the code snippet is not possible to compile isolated (it203

uses unknown methods) and if the implementation goal is not described. This will force the204

student to look carefully to the error message, and to parse the code himself.205

Code Interpretation206

Just like reading compilation error logs, students lack the ability to understand code. A207

simple approach to force students to read and interpret an algorithm is to present the208

student with a snippet of code, and a set of options of behaviour. The behaviour can be a209

description of the algorithm goal, or just information about compilation error messages, or210

faulty behavior. This kind of exercise is interesting if the code is done in a way the student is211

not able to copy it and run in a compiler to test it, for example, using non defined functions212

described by text.213

Keyword Use214

This option is an add-on to some specific type of exercises, like the implementation of code215

from scratch or the development of a specific function or line of code. In this add-on, the216

teacher specifies the use of a specific keyword. As an example, the teacher may require the217

student to use a map function for a functional style solution to a specific problem, instead of218

implementing it as a loop. The main problem on this approach is the automatic evaluation,219

because it can not be just a pattern match, as students might use comments to put there the220

keyword, or include the keyword in void context, where it does not affect the behaviour of221

the code. Therefore, the better approach is to instrument the original function in order to222

log what was its input, and test there it was implemented correctly. The ability to do this223

kind of instrumentation will depend largely on the used programming language.224

3.2 Exercise gamification modes225

If different types of exercise test the students knowledge in different situations, gamification226

increases motivation, challenging their knowledge. Gamification can be introduced just227

with a ranking on the number, on how many problems were solved by each student, or by228

assigning (different) points to (different) problems. But this is a rather limited approach to229

Gamification. Gamification can be used to challenge students to solve a solution in a specific230

way, and therefore, being not just useful for motivation, but also for learning [8].231

We will discuss how different approaches of gamification can be used to foster learning,232

and defy students.233

Slender / Golf234

Instead of just grading a solution accordingly with their result, evaluate the number of235

characters, instructions, or lines used to solve the problem. In some programming language236

communities like the Perl Community [5] this is seen like a sport, known as Golf or Golfing.237



A. Simões and R. Queirós 23:7

While this challenge is funny, it can be counterproductive. Shorter solutions are usually238

ugly, difficult to maintain, and explore obscure details of the host programming language.239

Therefore, while this kind of evaluation can be used with students, it should not be their240

main goal.241

Sprinter242

Efficiency is something students should understand and be able to reach. Teaching them243

Program Complexity is tedious and non attractive. But if students are challenged to write a244

fast solution for a problem, they will need to understand the efficiency of different algorithms245

and data structures in order to score.246

If the solutions are run on a specific hardware (like a server responsible for evaluating the247

answers), the teacher can prepare a good solution, time it, and define a threshold execution248

time, forcing students to get their running time below that value.249

Economic250

Parallel to the Sprinter approach, students are rewarded by the amount of memory they use.251

Nowadays, given the large amount of memory available on personal computers, students do252

not have the care to use and reuse memory.253

For instance, when teaching the C programming language, it is hard to teach students254

when they can free memory. This leads to solutions where memory is never freed. Computing255

the maximum amount of memory used by the solution application during a complete run256

can be used as a mechanism to motivate students to try to free up memory whenever they257

do not need it.258

Sedulous259

Students with learning difficulties can demotivate easily, as they see other students being260

able to accomplish working and probably fast and economic solutions. Rewarding students261

that attempt to solve a problem more than a fixed amount of tries can be motivational. Of262

course that the grading system should be able to understand if those are honest attempts or263

if the student is just trying to send always one wrong solution just to be rewarded.264

Scout265

Provides a bonus reward when the student makes several tests to check his solution, before266

submitting. This is not something that can be easily accounted for automatically. A good267

alternative is to give a bonus to the student if it passes all the tests with the first submitted268

solution.269

Meticulous270

Sometimes there are different ways to accomplish a working solution, and the number of271

lines, the code efficiency or amount of used memory is not enough to distinguish the chosen272

solution approach. With this in mind, teachers can define a set of specific keywords or273

function/methods that will give a bonus to the student’s solution.274

The main problem for this solution is the possibility of cheating. If the student gets aware275

that a specific keyword is being checked, he might just write that keyword in a comment, or276

in a void context, where it is not exactly being used as it should. A way to circumvent this277

ICPEC 2020



23:8 On the Nature of Programming Exercises

cheating approach is to hide to the student how the grading system works, or to define a278

wrapper to the functions being tested, that evaluate how they are being used in the student’s279

solution.280

3.3 Exercise Statistics281

In the previous section we presented some ways to grade students accordingly with different282

factors that do not relate necessarily with the correctness of the solution. Teachers might283

not want to use all of those grading approaches at the same time. Nevertheless, computing284

statistics on some of the presented factors, and showing them to the students can work,285

indirectly, as gamification.286

Thus, it is suggested to add solution metrics regarding each problem submitted solutions.287

Follow some simple examples:288

Average Solution Time: how much time a student takes to prepare a solution, starting289

from the moment the problem description was seen, up to a good solution to be submitted.290

This will allow students to understand how they relate with their mates, and will allow291

the teacher to understand how his students problem solving abilities are.292

Wrong Attempts Average: how many attempts (in average) a student performs, before293

getting the solution accepted. If this number is high, students might not have understood294

the problem correctly, or they are trying at force to get a solution, instead of really295

thinking in a good approach.296

Least Memory Used: who is the student having the solution using less memory for each297

problem.298

Shortest Execution Time: who is the student having the fastest solution.299

Average Execution Time: what is the average execution time for a specific problem300

solutions.301

4 Conclusions302

Learning programming is a difficult task. Many reasons have been shared among the scientific303

community. However, it is important not to forget, that learning programming requires304

constant practice. In programming, this practice boils down to solving exercises, often from305

scratch. While this could be simple for average and expert students, for novice students this306

approach can negatively affect his performance in the course and, consequently, increase their307

demotivation. Therefore, this paper describes several types of exercises in order to cover308

different learning profiles and enhance new skills. This diversity is seen by the authors as309

beneficial to not making the challenges tedious for more advanced students and to support310

novice students to consolidate their skills.311

As future work, the authors will try to explore simple ways to facilitate the process of312

changing an exercise type through standard and non-language dependent techniques.313

References314

1 Anabela Gomes, Cristiana Areias, Joana Henriques, and António José Nunes Mendes. Apren-315

dizagem de programação de computadores: dificuldades e ferramentas de suporte. Revista316

Portuguesa de Pedagogia, 42:161–179, 2008.317

2 Tony Jenkins. On the difficulty of learning to program. In 3rd Annual LTSN-ICS Conference,318

pages 53–58, 2002.319

3 Kattis. Kattis, 2019. accessed on Jan 2020. URL: https://open.kattis.com/.320



A. Simões and R. Queirós 23:9

4 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest321

system. Softw. Pract. Exper., 33(6):567–581, May 2003. doi:10.1002/spe.522.322

5 Jon Orwant. Games Diversions & Perl Culture: Best of the Perl Journal. O’Reilly Media,323

2004.324

6 Ricardo Queirós and José Paulo Leal. Babelo - an extensible converter of programming325

exercises formats. TLT, 6(1):38–45, 2013. doi:10.1109/TLT.2012.21.326

7 Ricado Queirós and Jose Paulo Leal. Making programming exercises interoperable with PExIL.327

In Jose Carlos Ramalho, Alberto Simões, and Ricardo Queirós, editors, Innovations in XML328

Applications and Metadata Management: Advancing Technologies, pages 38–56. IGI Global,329

2013.330

8 Jakub Swacha, Ricardo Queirós, José Carlos Paiva, and José Paulo Leal. Defining requirements331

for a gamified programming exercises format. In Imre J. Rudas, János Csirik, Carlos Toro, János332

Botzheim, Robert J. Howlett, and Lakhmi C. Jain, editors, Knowledge-Based and Intelligent333

Information & Engineering Systems: Proceedings of the 23rd International Conference KES-334

2019, Budapest, Hungary, 4-6 September 2019, volume 159 of Procedia Computer Science,335

pages 2502–2511. Elsevier, 2019. doi:10.1016/j.procs.2019.09.425.336

9 Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins, P. K. Ajith337

Kumar, and Christine Prasad. An australasian study of reading and comprehension skills338

in novice programmers, using the bloom and solo taxonomies. In Proceedings of the 8th339

Australasian Conference on Computing Education - Volume 52, ACE ’06, page 243–252, AUS,340

2006. Australian Computer Society, Inc.341

ICPEC 2020


	Introduction
	Programming Exercises
	Formalization
	Evaluation

	Types of Programming Exercises
	Exercise types
	Exercise gamification modes
	Exercise Statistics

	Conclusions

