
Language Identification:

a Neural Network Approach

Alberto Simões1, José João Almeida2, and Simon D. Byers3

1 Centro de Estudos Humanísticos, Universidade do Minho

Braga, Portugal

ambs@ilch.uminho.pt

2 Departamento de Informática, Universidade do Minho

Braga, Portugal

jj@di.uminho.pt

3 AT&T Labs

Bedminster NJ, US

headers@gmail.com

Abstract

One of the first tasks when building a Natural Language application is the detection of the used

language in order to adapt the system to that language. This task has been addressed several

times. Nevertheless most of these attempts were performed a long time ago when the amount

of computer data and the computational power were limited. In this article we analyze and

explain the use of a neural network for language identification, where features can be extracted

automatically, and therefore, easy to adapt to new languages. In our experiments we got some

surprises, namely with the two Chinese variants, whose forced us for some language-dependent

tweaking of the neural network. At the end, the network had a precision of 95%, only failing for

the Portuguese language.

1998 ACM Subject Classification I.2.7 Natural Language Processing: Language models

Keywords and phrases language identification, neural networks, language models, trigrams

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.251

1 Introduction

The problem of Language Identification has been addressed for a long time, usually as a

language model, that validates how likely a text is modeled by a specific language model [4].

This task can be considered the base when building a natural language processing stack of

tools, as before one can apply mostly any kind of language processing tool there is the need

to know the text language or, at least, the text alphabet. Only after that identification is

done we can apply a tool to the text being certain that it will know how to deal with the

characters, the words, or the syntax.

Following the idea presented in the previous paragraph, we can divide the task of identi-

fying a language in two main tasks: first, the alphabet identification (looking to which

characters1 are used) and second, the identification of the language itself.2

1 We are aware that the notion of character change with different alphabets. In this article we refer to
character as an entry in the Unicode table.

2 Here we are simplifying, as there are some languages that can be written in two different alphabets. In
this paper we will consider that each language has a preferred alphabet, and that is the one that will
be used.

© Alberto Simões, José João Almeida, and Simon D. Byers;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 251–265

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



252 Language Identification: a Neural Network Approach

At first the identification of some languages can be seen as simple. If a human looks

to some Chinese text, he might notice that characters seem different from the ones used in

Korean or Japanese text. In the same manner, Hindi characters are not likely to be found

in other languages. The truth is that it is not as simple as it might seem, as for example,

Chinese, Korean and Japanese share a huge amount of characters.

For the next level there are yet more problems. Consider the large amount of languages

that share the Latin characters, and the amount of languages with the same origin, like

Portuguese, Galician or Spanish. It can get harder if one tries to distinguish between

language variants, like English from United States or United Kingdom.

In this paper we present a tool for learning language identification from tagged corpora

into a Neural Network. Although this idea is not new, previous work on this task was

published more than 20 years ago, and a lot has changed. Nowadays we have large quantities

of text, in most any language existing in the world, and enough computational power to train

a Neural Network is a relatively large amount of parameters. Also, and although we are not

using that knowledge, there are new studies on methods to train Deep Neural Networks [5, 1],

that we are interested to research about.

So, to start with, our main objective was to use a simple Neural Network implementation,

making it easy to implement a language identifier in any programming language given the

neural network parameters Θ. Then, as this approach is working, we intend to apply new

techniques, namely the referred deep neural networks.

At the moment, and as a proof of concept we developed the learning algorithm in Octave

(an open-source implementation of the well known MATLab software), and implemented

language identifiers in two different programming languages: Perl and Java.

First we will analyze the current language identification approaches, namely the ones

already using Neural Networks, and compare them with our approach. This will be discussed

in the next section.

The section 3 describes the entire process of training the Neural Network, starting with

the dataset preparation. Then, we will discuss how the features were chosen, and which were

used. Follows the description of the Neural Network architecture, and its implementation

details.

Section 4 will analyze how well the Neural Network performs in different kind of texts

and for different language pairs.

Finally, section 5 presents some conclusions regarding our work, and pointers in future

directions.

2 Language Identification Approaches

When looking up for works on language identification one might be surprised to find out that

most of the recent published work is devoted to spoken language identification. Although

the task might be similar, as the main algorithm would be to detect features most common

in some languages than in another, the fact is that the searched features are of different

kind. In this work we will focus only in the works devoted to identify languages on written

text.

In the other hand, there are not many publications on language identification on written

text. A reason for that might be the existence of two patents [9, 10], that explore the use

of trigrams or generically n-grams for language identification. It is always interesting that

some of these patents are granted when previous work like [6] already use this same kind

of approach but for sound. Also, one year later, Nakagawa et al. [8] published work on

language identification based on Hidden Markov Models that use n-grams as well.



A. Simões, J. J. Almeida, and S. D. Byers 253

In fact, Muthusamy already used neural networks for language identification. So, a

question arises: what does our work do that was not done before? First, his main task

was to identify language on spoken text. Other than that, in 1993 the amount of data

available in text format was quite smaller than the amount of texts available nowadays, and

the number of languages in which these texts exist is also very different. In another aspect,

the computational power also changed drastically. Muthusamy used at most 10 languages,

and not much more than 130 features, which were mostly chosen manually.

Our approach takes advantage of the amount of text available as well as the computa-

tional power to compute automatically what features to use. Our experiments gone up to

more than one thousands features, having the network to took less than one day to train

with a reasonable number of iterations.

3 Neural Network

Neural networks are being used for some time and their design and implementation for

standard situations is well known [3]. Most of the work using neural networks aims at the

classification of objects. In this case, the network works as a hypothesis function hΘ(X)

that, based on a set of matrices Θ previously computed on a training set, is able to classify

an object based on a set of features extracted from that object. So, in the case of language

identification, our training set is a set of texts manually classified in one language and an

algorithm to extract features from them. These features are them fed in the neural network

training algorithm that will compute the set of matrices Θ.

These matrices are then used to identify the language of new texts. For that, the features

X are extracted from the text to be classified, and the hypothesis function is called. The

resulting vector will include the probabilities of that text being identified as each one of the

trained languages.

This section describes the main approach used to train our neural network. First we will

discuss how the training texts were prepared. Follows the algorithm for extracting features

from the training dataset, and the details on the neural network, explaining the architecture

and the implementation details.

3.1 Dataset Corpora Preparation

In order to gather training data we used text from the TED conference website. This

resulted in a core corpus of 105 different languages and language variants. These texts had

very different sizes depending on the amount of data available in the TED website.

Given the technical nature of these texts, they include high proportion of technical

terms, company and product names, and person names which are not translated. We will

be referring to these as named entities [7], although some of them are not, at least in the

usual definition of the term. This type of linguistic units is present to a varying degree in

many language data sources.

This leads to the problem that text in a target language used for training might have

snippets of another language appearing in it. This is exacerbated in translated text and in

technical text. Also, in multilingual data on the same subject, particular word and character

level features may appear in many languages despite being unrepresentative of most of them.

When extracting n-grams, for example, it might happen that the most frequent are part of

these terms. The result are features that are not language discriminant, although of high

frequency.

SLATE 2014



254 Language Identification: a Neural Network Approach

In order to obtain clean training data we exploit the fact that the TED data form a

multilingual parallel corpus. In particular the initial source language is English in this case.

We extract the out-of-vocabulary words and some named entities from the English text using

the Hunspell3 spell checker and its default English dictionary. Note that we are extracting

named entities that contain non-words, like proper names or trade marks. These words

then, if they appear in the non-English tracks for that aligned text, should be removed due

to their potential foreign origin.

This process allows us to obtain cleaner training text, where words are more likely to be

purely of the tagged language. The drawback is that the resulting text no longer has correct

sentences. Nevertheless, if we compute only character n-grams (and not word n-grams) that

problem should not be relevant.

Finally, for the Portuguese language, we used the Lince [2] application in order to render

the texts compliant to the 1990 Portuguese orthography reform, recently implemented.

Given that this reform was established with the explicit goal of better unifying the or-

thography of the several variants of the Portuguese language worldwide, it is only natural

that, in spite of the remaining differences, it has brought closer together the orthographies

of European and Brazilian variants. Therefore, we might have considered Portuguese as an

unique language and probably should have selected texts from only one of these variants.

Nevertheless, we kept the two variants as distinct, and will discuss the obtained results later.

3.2 Feature Extraction

Our main goal, initially, was to use only n-gram features (namely trigrams) from the lan-

guages being used in the training process. Unfortunately, when using character trigrams, we

are working with word trigrams for the Asiatic languages, like Korean, Chinese or Japan-

ese, as each character represent (roughly) a word. This means that the amount of different

trigrams for these languages is huge. To solve this problem we might enlarge the number of

features extracted per language, thus making the training process prohibitive. Other option

would be to change the number of trigrams for those specific languages. At the end we de-

cided to create character dependent features (instead of some language-dependent features),

regarding the number of characters used in some alphabets.

Therefore, currently we have two different levels of features: one related with the charac-

ters that are used, and another with the character trigram frequency information. All these

features are extracted from 30 different texts for each one of the training languages.

Alphabet Features

As stated in the introduction, it is not possible to create an injective function from used

characters to the written language neither from the language to the used characters.

For the Latin alphabet alone there are dozens of languages. For the Chinese, Japanese

and Korean languages, they all use Chinese Kanji morphemic script, although Japanese

script is sillabary, not an alphabet, and Korean uses a proper alphabet (phonologically

based script). The situation gets worse when looking to the traditional and simplified

Chinese versions that share most of their characters.

To compute features related to the used characters, we defined 10 different classes Ci:

3 Details on the Hunspell spell checker and its dictionaries can be obtained from the project webpage at
http://hunspell.sourceforge.net/



A. Simões, J. J. Almeida, and S. D. Byers 255

1. Latin characters, only a-z, without diacritics;

2. Cyrillic characters, containing Unicode characters in the intervals 0x0410-0x042F and

0x0430-0x044F;

3. Hiragana and Katakana characters (used for Japanese), containing Unicode characters

between 0x3040-0x30FF

4. The Hangul characters (used for Korean), from the Unicode classes 0xAC00-0xD7AF,

0x1100-0x11FF, 0x3130-0x318F, 0xA960-0xA97F and 0xD7B0-0xD7FF;

5. Kanji characters (used in Japaneses, Korean and Chinese), from the Unicode class

0x4E00-0x9FAF;

6. Simplified Chinese characters, a list of 2877 characters, hand-curated and available on

GitHub4;

7. Traditional Chinese characters, a list of 2663 characters, hand-curated and also avail-

ablefrom GitHub;

8. Arabic characters (used in Persian, Urdu, and different varieties of the Arabic language),

in the Unicode class 0x0600-0x06FF;

9. Thai characters, for the Unicode class 0x0E00-0x0E7F;

10. Greek characters, in the Unicode classes 0x0370-0x03FF and 0x1F00-0x1FFF.

For the text segment being analyzed, the number of characters for each one of these

classes are counted, and the relative frequency computed. After some experiments, and

in order to reduce the entropy for the neural network, we decided to help by computing

discrete values. Therefore, before using these ten values in the neural network a small set

of rules make the values binary. When setting a class Ci, the result will have Ci = 1 and

Cj = 0, ∀j 6= i.

Follows the list of rules used in this context:

set C1 ⇐ C1 > 0.20

set C2 ⇐ C2 > 0.40

set C3 ⇐ C3 > 0.20

set C4 ⇐ C4 > 0.20

set C6 ⇐ C5 > 0.30 ∧ C6 > C7

set C7 ⇐ C5 > 0.30 ∧ C6 < C7

set C8 ⇐ C8 > 0.20

set C9 ⇐ C9 > 0.20

set C10 ⇐ C10 > 0.20

These percentages were defined empirically. In fact, these rules are specially relevant for

the Japanese, Korean and Chinese languages. Note that the two complicate rules are used

to distinguish between the two Chinese variants. After running these rules, these features

are used directly in the neural network.

Trigram Features

Regarding language information, we chose to store information about character trigrams.

There are different reasons why we chose to use three characters:

4 Check https://github.com/jpatokal/script_detector

SLATE 2014



256 Language Identification: a Neural Network Approach

Für mich war das eine neue Erkenntnis. Und ich denke, mit der Zeit, in den

kommenden Jahren, Wir haben Künstler, aber leider haben wir sie noch nicht

entdeckt. Der visuelle Ausdruck ist nur eine Form kultureller Integration.

Wir haben erkannt, dass seit kurzem immer mehr Leute

Figure 1 A sample text in the German language.

bigrams would be too small when comparing very close languages like Portuguese and

Spanish;

tetragrams would be too big for Asiatic languages, where some gliphs represent words

or morphemes;

punctuation and numbers were removed, and spaces normalized, meaning that trigrams

would be able to capture the end and beginning of two words that usually occur together,

as well as to capture single character words that appear surrounded by spaces.

This task was performed using the Perl module Text::Ngram5, which deals with the task

of cleaning the text, normalizing spaces and computing n-grams. The obtained counts were

then divided by the total number of trigrams found, thus computing their relative frequency.

As an example, Table 1 shows the result of computing trigrams on the text from Figure 1.

Table 1 Top 25 occurring trigrams from text shown in Figure 1.

en␣ 0.02299 er␣ 0.02682 ␣de 0.01533 abe 0.01533 der 0.01149

hab 0.01149 ich 0.01149 ir␣ 0.01149 it␣ 0.01149 r␣h 0.01149

␣wi 0.01149 ben 0.01149 ch␣ 0.01149 den 0.01149 wir 0.01149

␣ha 0.01149 ine 0.00766 ler 0.00766 lle 0.00766 n␣k 0.00766

mme 0.00766 ne␣ 0.00766 nnt 0.00766 r␣l 0.00766 r␣m 0.00766

Features Merging

Although the alphabet features is a limited list of ten different alphabets, there is the need

to merge the trigram features into just one list choosing only the more significant.

This process is performed in two stages, first for each language, then for the entire

training set:

1. For each of the 30 training texts from a specific language we compute the 20 trigrams

with higher frequency. The trigrams are then merged in an unique list that includes the

most occurring trigrams from all the training texts in a specific language. Next, this list

is reduced, preserving only the 20 trigrams that are present in most texts. Note that we

are not interested in their frequency in each training text, but how often they appear in

different texts.

2. Next, each group of 20 trigrams computed from a specific language are joined together

in a big list of features.

So, the complete features list F includes the alphabet features (Fa) and the trigrams

features (Ft): F = Fa ∪ Ft. With this feature list we can compute the training data, in the

form of a matrix. Each line of the matrix is the data collected from each one of the training

5 Available from https://metacpan.org/pod/Text::Ngram.



A. Simões, J. J. Almeida, and S. D. Byers 257

Table 2 Training data matrix.

Alphabet Features Trigram Features

Latin Greek Cyril. ␣pa ới␣ par nia ест ати ата

PT 1 0 0 0.0041 0 0.0038 0.0001 0 0 0

PT 1 0 0 0.0039 0 0.0036 0 0 0 0

RU 0 0 1 0 0 0 0 0.0020 0.0004 0.0003

RU 0 0 1 0 0 0 0 0.0026 0.0005 0.0002

UK 0 0 1 0 0 0 0 0.0003 0.0034 0.0001

UK 0 0 1 0 0 0 0 0.0003 0.0026 0.0001

VI 1 0 0 0 0.0028 0 0 0 0 0

VI 1 0 0 0 0.0029 0 0.0001 0 0 0

texts. Each column of the matrix corresponds to a different feature from F . Each cell of

the matrix stores the value of a specific feature in a specific training text. Table 2 shows an

excerpt from this matrix.

3.3 Network Architecture

A neural network is composed by a set of L layers, each one composed by a set or processing

units. A processing unit is denoted by a
(l)
i where l is the layer where it belongs, and i its

order.

All units from a specific layer are connected to all units from the next layer. This

connection is controlled by a matrix Θ(l), for each layer l.

The first layer is known as the input layer. It has the same number of units as there are

features to be analyzed (in our experiment, 565 units). Whenever the network hypothesis

function is evaluated each cell a
(1)
i is filled in with the values obtained by the features

observation.

The next layer, a
(2)
i is computed using the previous layer and the matrix Θ(1), as will be

explained in the next section. This process is done for every layer l ≤ L.

The layer L is known as the output layer. There are as many units in this layer as the

number of classes K in which the network will classify objects. Therefore, if the network is

trained to detect 25 languages, then there are 25 units in the output layer. Each unit in the

output layer will, optimally, get a value that is either 1 or 0, meaning that the object is, or

is not, in the respective class. Usually, the result is a value in this range, that represent the

probability of the object to be of that specific class.

The other layers, 1 < l < L, are known as the hidden layers. There are as many hidden

layers as one might want, but there is at least one hidden layer. Adding new layers will

make the network return better results but it will take more time to train the network, and

take more time to run the network hypothesis function. For our experiments we used only

one hidden layer.

Regarding the number of units in the hidden layers, there are some rules of thumb: use

the same number of units in all hidden layers, and use at least the same number of units

as the maximum between the number of classes and the number of features. But there can

be up to three times that value. Given the high number of features we opted to keep that

same number of units in the hidden layer.

3.4 Training Details

This kind of neural network implementation is not complicated, but is susceptible to er-

rors. Our neural network was implemented using the more common definition of a neural

network [3].

SLATE 2014



258 Language Identification: a Neural Network Approach

565X

1X

2X

3X

4X

5X

6X

7X

1K

2K

3K

4K

5K

25K

Figure 2 Neural network architecture.

The implementation of the neural network was based on the logistic function defined

by g(z). This function range is [0, 1], and its result value can be considered a probability

measure. The logistic function is defined as:

g(z) =
1

1 + exp −z

Our neural network hypothesis function, hΘ(l)(X) is defined by two matrices, Θ(1) and

Θ(2). These matrices of weights are used to compute the network. The input values, obtained

by the computed features, are stored in the vector X. This vector is multiplied by the first

weight matrix, and the logistic function is applied to each value of the resulting vector. The

resulting vector is denoted as a(2) and corresponds to the values of the second layer of the

network (the hidden layer). It is then possible to multiply a(2) vector by the weights of Θ(2)

and, after applying the sigmoid function to each element of the resulting multiplication,

we obtain a(3). This is the output layer, and each value of this vector corresponds to the

probability of the document being analyzed to as being written in a specific language. This

algorithm is known by forward propagation and is defined by:

a(1) = x

for i = 2 to L,

a(i) = g
(

Θ(i−1)x
)

The main problem behind this implementation is how to obtain the weight values. For

that the usual methodology is to define a cost function and try to minimize it, that is,

finding the Θ values for which the hypothesis function has a smaller error for the training

set.



A. Simões, J. J. Almeida, and S. D. Byers 259

The cost function with regularization is defined as:6

J(Θ) = −
1

m

(

m
∑

i=1

K
∑

k=1

y
(i)
k log(hΘ(x(i)))k + (1 − y

(i)
k ) log(1 − (hΘ(x(i)))k)

)

+
λ

2m

L−1
∑

l=1

sl
∑

i=1

Sl+1
∑

j=1

(

Θ
(l)
j,i

)2

.

The regularization is controlled by the coefficient λ which can be used to tweak how the Θ

weights absolute value will increase. Although our implementation supports regularization

the experiments performed did not use any regularization (λ = 0).

The minimization of the cost function J(Θ) is computed by an algorithm known as

Gradient Descent. This algorithm uses the partial derivatives

∂

∂θ
(l)
i,j

J(Θ)

to compute the direction to use to obtain the function minimum. The algorithm continues

iterating until the difference between the obtained costs is very small, or until a limit number

of iterations it met.

Gradient Descent can be implemented using an algorithm known as Backwards Propaga-

tion to compute efficiently the partial derivatives. Our implementation runs a number of

iterations and save the Θ values. It is then possible to continue the training from those

values. In the future this will allow us to create a test set and stop training when it has a

sufficiently high precision. Nevertheless, at the moment we are performing tests with a fixed

number of iterations (check next section).

4 System Evaluation

Our experiment used 25 languages: Arabic (AR), Bulgarian (BG), German (DE), Modern

Greek (EL), Spanish (ES), Persian (FA), French (FR), Hebrew (HE), Hungarian (HU),

Italian (IT), Japanese (JA), Korean (KO), Dutch (NL), Polish (PL), Portuguese (PT),

Brazilian Portuguese (PT-BR), Romanian (RO), Russian (RU), Serbian (SR), Thai (TH),

Turkish (TR), Ukrainian (UK), Vietnamese (VI) and, Traditional and Simplified Chinese

(ZH-TW and ZH-CN).

The neural network was trained using these 25 languages and the corpora described in

section 3.1. The next subsection explains the creation and characterizes the test set for these

languages. Note that although the training corpora was cleaned, removing some words that

are not likely to be in that language, the test corpora is noisy (namely including some words

from other languages).

4.1 Test Set Characterization

For each language to be identified we collected 21 documents. Given we do not master all

these languages we had some difficulties on collecting documents for some languages. To

be sure of the languages of the test files we often resorted to other language identification

software. All the texts were collected from on-line newspapers. Therefore, the texts have

6 It goes beyond of focus of this article to discuss and explain what is the regularization and how it
works. The same is true regarding the Gradient Descent or the Backwards Propagation algorithms.

SLATE 2014



260 Language Identification: a Neural Network Approach

Table 3 Training and test set statistic for each language. Values are in number of Unicode

characters.

Training Set Test Set

Language Smaller Larger x̄ σ Smaller Larger x̄ σ

ar 871921 969387 907562 21392 863 4618 2366 1210

bg 988450 1087435 1027581 23663 660 2099 1091 378

de 588200 653508 618463 16475 677 3890 1554 842

el 773265 885770 841203 22653 550 3297 1590 705

es 578806 651240 617341 17637 897 3850 2342 935

fa 651807 766206 697212 28994 600 5221 1338 967

fr 639582 705675 673414 15377 936 4088 1879 689

he 806098 877218 836222 20545 559 3649 1586 878

hu 406271 454506 431797 13131 729 6045 2175 1356

it 588147 643252 616391 14348 1260 6607 2991 1370

ja 538033 606053 569956 18871 323 785 495 133

ko 737118 817651 773168 20550 530 1603 780 233

nl 533497 580313 557724 14033 552 1949 1115 381

pl 521184 591299 551259 17938 435 3092 1605 694

pt-br 596158 643215 617734 14028 920 3189 1953 589

pt 338272 378872 355800 10605 486 5875 2031 1169

ro 592714 650375 616051 15442 718 3254 1438 695

ru 1019789 1144200 1069884 31232 662 2470 1444 526

sr 349389 433221 379344 20560 834 6493 1813 1263

th 529484 601244 565082 18551 334 3242 1396 734

tr 494191 549998 524271 12774 332 5390 1559 1121

uk 370785 434683 395312 16641 299 15435 2430 3553

vi 470057 541930 510409 17246 680 6237 1555 1359

zh-cn 536438 595027 562728 14457 495 6331 1695 1559

zh-tw 514993 588860 542879 16000 270 1721 925 428

plenty of named entities (that our training corpus misses) and vary on size. In fact, in

some situations the news texts were not copied completely, in order to have smaller texts.

Unfortunately the task of collecting these texts was done ad-hoc, resulting in some very

different sizes for different languages. Check Table 3 for some more information on the

number of characters per test file.

Curiously, when building this test set we found some texts that were being wrongly

identified because we collected them in the wrong language. Although this fact is not

relevant, it was curious that a collected text in Catalan was identified as French. This

means that the neural network is able to detect languages by proximity.

4.2 Accuracy

Our first experiments did not include the alphabet features. Although it worked relatively

well for most languages, the trained neural network failed for the four Asiatic languages.

The main reason for that is the large proportion of characters that are shared among these

languages, while each one has a structurally different type of base script. This leads to a

large amount of different trigrams and therefore the neural network would need many more

features per language (or for these specific language).



A. Simões, J. J. Almeida, and S. D. Byers 261

Table 4 Accuracy on test set, when training with 1500 and 4000 iterations.

Language 1500 iters. 4000 iters. Comments

ar 100% 100%

bg 100% 100%

de 100% 100%

el 100% 100%

es 100% 100%

fa 100% 100%

fr 100% 100%

he 100% 100%

hu 100% 100%

it 100% 100%

ja 100% 100%

ko 100% 100%

nl 100% 100%

pl 100% 100%

pt 5% 52% wrongly classifies as pt-br

pt-br 100% 76% wrongly classifies as pt

ro 100% 100%

ru 100% 100%

sr 100% 100%

th 100% 100%

tr 100% 100%

uk 100% 100%

vi 100% 100%

zh-cn 100% 100%

zh-tw 100% 100%

After adding the alphabet features, we trained the neural network with two different

number of iterations: 1500, and 4000. Table 4 presents accuracy values for each language

when analyzing the test set. Globally, with 1500 iterations we were able to get 96% of

precision, and with 4000 iterations it gets up to 97%.

Looking to the results’ table one can see that the most problematic languages are the

two Portuguese variants, for which many texts are being attributed to the Brazilian variant.

This is probably the result from the 1990 orthographic reform, whose aim was, precisely, an

orthographic unification of the Portuguese language across its variants, just like the tests

demonstrate.

In order to compare our (bad) results we did some experiments with the Perl module

Lingua::Identify::Blacklists [11] that uses lists of words that are blacklisted for some

languages. The results for the Portuguese variants were 66% of accuracy for the European

variant, and 100% accuracy for the Brazilian language.

Looking to this module blacklists we found out that, more than identifying the variant,

the tool identifies the topic of the text. For example, the module states that if a text includes

the word “Brasília” (the capital of Brazil) or “Pará” (a state from Brazil), then the text

should be in the Brazilian variant. It happens in the inverse direction as well, with other

proper names, like “Madaíl” (a controversial person in the Portuguese soccer) or “Louçã”

(a left-wing deputy from the Portuguese parliament). Also, the module uses a list of words

that changed in the 1990 orthographic agreement, meaning that for new Portuguese texts

they are useless.

SLATE 2014



262 Language Identification: a Neural Network Approach

AR BG DE

EL ES FA

FR HE HU

IT JA KO

NL PL RO

SR TH RU

UK VI TR

Figure 3 Language identification distribution.



A. Simões, J. J. Almeida, and S. D. Byers 263

PT PT-BR

ZH-TW ZH-CN

Figure 4 Language identification distribution for the two Portuguese and Chinese variants.

A good way to evaluate and compare the results from this module and our neural network

would be the use of a good parallel corpus European/Brazilian Portuguese. This would allow

us to evaluate the language identification and not the topic identification.

4.3 Probability Distribution

For each language we chose randomly one of the test files, and computed the language

identification probabilities. Figure 3 show them for most languages.7 Although the graphs

are small and not readable, it is easy to notice that there is a big difference from the first

language identified (the correct one) and the second choice. From these twenty one graphs

the only relevant for analysis is the Bulgarian, which is very near Russian and Ukrainian.

Figure 4 presents the same graph for the remaining four languages, that include the two

Portuguese and the two Chinese variants. Note that, for the Chinese variants, the difference

from the first probability to the rest is very high. This is not a result of the trigrams

features, but the fact that our alphabet identifier is working well to differentiate the two

orthographies. Regarding the two Portuguese variants, it is clear the confusion between the

European and Brazilian variants, with probabilities around 45%.

5 Conclusions and Future Work

In this article we present a neural network that is able to identify languages with 96% or 97%

of accuracy, depending on the number of iterations performed during the training process.

7 Note that graphs are using an exponential y axis.

SLATE 2014



264 Language Identification: a Neural Network Approach

For that we used two kind of features: one related with the language alphabet, and another

related to the character trigrams with higher occurrence.

Given that we are able to use binary features to classify the alphabet (at the moment

we have ten binary features) and they are mutually exclusive, the neural network is able to

learn much faster to distinguish some collections of languages.

A problem with our approach is that it will perform badly on short snippets of text (like

instant messages or mobile messages), because of the low number of trigrams selected by

language. We are investigating how to deal with this problem without compromising the

time needed to train the neural network.

Regarding the problem with the Portuguese variant we are mostly convinced to merge

the two variants in a single one, given that with the so mentioned Orthographic Agreement

it does not make sense to keep distinguishing between the two.

On using a neural network, we should be reminded that the result is not deterministic:

the same number of iterations to train a network might yield different results, depending on

the values used to initialize the Θ matrices.

Future Work

The next (certain) steps on this project would be (and probably, in this order):

1. Remove the Brazilian Portuguese and/or merge it with the European Portuguese variant;

2. Add the English language, that was not included at first because of some technical

problems when preparing the training corpora;

3. Release the Perl and Java identification modules publicly;

4. Add more languages;

5. Go to point 3, and iterate.

Nevertheless, every time we train the neural network we find new experiments we would

like to perform. These steps are likely to be done, but in any order:

Try to reduce the number of trigrams per language and add some bigrams or one-grams.

These tests’ main rationale would be to reduce the number of features, as adding new

languages are likely to include more features and make the training process slower.

Compute distribution differences between near languages and, instead of using just the

more occurring trigrams, use those that are most distinctive;

In order to make the neural network smaller, train a different neural network for each

alphabet. This will allow modularization when making the language identifier available.

The user could then download only the modules relevant for her task.

Our experiments with more than 4000 iterations gave worst results than the ones presen-

ted here. This happens because the algorithm is not using any regularization, and there-

fore the neural network is being biased by the training data and is unable to generalize.

Further experiments are needed to study good values for the regularization coefficient.

Neural networks are known to have difficulties to scale. Nevertheless, recent work in

deep learning [5, 1], and deep neural networks might be relevant to analyze and use.

Acknowledgments. The authors would like to thank Catarina Sousa for the help compiling

the test dataset, and the three reviewers, Lluís Padró, António Teixeira and Jorge Baptista,

for their comments, insights and corrections.



A. Simões, J. J. Almeida, and S. D. Byers 265

References

1 Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends® in Machine

Learning, 2(1):1–127, January 2009.

2 José Pedro Ferreira, António Lourinho, and Margarita Correia. Lince, an end user tool for

the implementation of the spelling reform of Portuguese. In Helena de Medeiros Caseli,

Aline Villavicencio, António J. S. Teixeira, and Fernando Perdigão, editors, Computational

Processing of the Portuguese Language - 10th International Conference (PROPOR), volume

7243 of Lecture Notes in Computer Science, pages 46–55. Springer, 2012.

3 Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

4 Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-

Hall, second edition edition, 2009.

5 Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring

strategies for training deep neural networks. J. Mach. Learn. Res., 10:1–40, June 2009.

6 Yeshwant Kumar Muthusamy. A Segmental Approach to Automatic Language Identifica-

tion. PhD thesis, B. Tech., Jawaharlal Nehru Technological University, Hyderabad, India,

October 1993.

7 David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.

Lingvisticae Investigationes, 30(1):3–26, 2007.

8 Seiichi Nakagawa and Allan A. Reyes. An evaluation of language identification methods

based on HHMs. Studia Phonologica, 28:24–26, 1994.

9 John C. Schmitt. Trigram-based method of language identification. US Patent Number

5.062.143, February 1990.

10 Bruno M. Schulze. Automatic language identification using both n-grams and word inform-

ation. US Patent Number 6.167.369, December 1998.

11 Jörg Tiedemann and Nikola Ljubešić. Efficient discrimination between closely related lan-

guages. In Proceedings of COLING 2012, pages 2619–2634, Mumbai, India, December 2012.

The COLING 2012 Organizing Committee.

SLATE 2014


	Introduction
	Language Identification Approaches
	Neural Network
	Dataset Corpora Preparation
	Feature Extraction
	Network Architecture
	Training Details

	System Evaluation
	Test Set Characterization
	Accuracy
	Probability Distribution

	Conclusions and Future Work

