
Text to speech

“A rewriting system approach”

José João Almeida
jj@di.uminho.pt

Alberto Manuel Simões
albie@alfarrabio.di.uminho.pt

Abstract

In this document we present an open source Portuguese text to speech. Our first goal is
to provide a flexible way to extend it, using a generic way to convert Portuguese words on
SAMPA phonemes, and consult dictionaries only on exceptions examples.

The Text-to-Speech is compound of five layers, each one based on simple rules in a way
to be easily tuned. In order to do that, we wrote a generic text rewriting system that is
presented in the section two.

The result of this work is a tool that can be used as an independent Text-to-Speech system
or as a Natural Language Processing library for various tasks. We present some examples
how them can be used in the Applications section.

1 Introduction

Text-to-Speech(TTS) is, as we know, a difficult
area. Romance languages, like Portuguese, are
very hard to transform to sound because of the
great amount of exceptions.

We intended to make the most generic
Perl[8, 6] module to convert Portuguese texts
to sound, using rules to transform words to
SAMPA [2] phonemes and dictionaries for ex-
ception cases.

Our approach is based on rewriting rules.
We take a text, divide it into sentences and,
based on the punctuation, classify the sentence
as exclamative, interrogative or other. This
classification will be used later, by the prosodic
transformer in order to make sentences more un-
derstandable.

Each sentence is divided on words to be, each
of them, transformed to SAMPA. This process is
based on dictionary search and on rule transfor-
mations. Later, the words are joined and com-
pared, again, with rules to make better word
junctions.

The SAMPA sentence so formed is passed
to a prosodic transformer to make the phrase
sound more human (transform a same frequency
sound to a melodic one). This is done with
rewriting rules, too.

The scheme tries to explain this cycle.
All these rewriting systems, and functions

can be used as a complete program, or can be
called independently. In the later case, we are
talking about a Perl module or library.

This Perl module has many functions that
can be helpful whith out the full TTS system.
We can name some of them, like the text to
sampa conversor, the word to sampa (different
from the previous one in the data type), or text
to MBrola[1] system file format.

Other ones, not so connected with the TTS
system, can be helpful for other purposes, like
the number to text conversion, or the e-mail and
internet URLs conversor to text.

Looking to this module as an application, we
can get a program to read text from the stan-
dard input, or to create a wave file to play later.

This system was not built alone, but in con-
juntion with a pt::pln perl module (portuguese
natural language processing module) that im-
plements some basic functions like sentence to-
kenize to words, words division by syllable, tonic
syllable search and so on.

1

2 Rewriting system

To this and other purposes, we built a rewriting
system. What we intend about this is a sys-
tem that, given a set of rules, parses a text and
rewrites all matching patterns.

Each set of rules, after the compilation take
place, generates a function that accepts the text
to be rewrited, and returns it. These functions
can be easily composed so that we will have com-
posed rewriting systems.

There are various kinds of rules, since sim-
ple substitutions rules, rules that evaluate the
string that will replace, rules that are evaluated
only when starting the system, rules that evalu-
ate if there is some context condition and rules
that make the system quit.

If there is any of the rules that make the sys-
tem exit, the system will process the text until
no rule pattern matches.

In this particular system, we should define
rules on a file, and compile it using the mktextrr
command. This, transforms rules to a Perl
script, that does the real job.

The source file is a perl file that, between
RULES and ENDRULES string, accepts rule defini-
tions to construct a function.

Rules have the following syntax:

left hand side ==> right hand side

left hand side =e=> right hand side

left hand side ==> right hand !! condiction

Because of the column width of the article,
we will use a more LATEX style.

Let’s see a first example: a rewriting system
that expands an e-mail to a HTML link to that
e-mail:

RULES email_expand

(\w+(\.\w+)+\@\w+(\.\w+)+)

⇓

$1

Note that regular expression matching is
pure perl code.

Saving this file under the name
email expand and processing it with

mktextrr email expand email expand.pl,

we get a function, named email expand that
accepts a text and does the transformations
needed.

You will notice that we didn’t use the
ENDRULES command. This is because there is
nothing more after the rules set. Now, suppose
we will edit the file, and make another function,
this one expand http URLs:

RULES email_expand

(\w+(\.\w+)+\@\w+(\.\w+)+)

⇓

$1

RULES http_expand

(http://\w+(\.\w+)+)

⇓

$1

One more time, we didn’t use the
ENDRULES, because we are defining another
rule set. Compiling the rules set, and using
http expand(email expand($text)) we can
replace all emails and URL’s.

Because RULES define a set, we can replace
the example with the following code:

RULES expand

(\w+(\.\w+)+\@\w+(\.\w+)+)

⇓

2

$1

(http://\w+(\.\w+)+)

⇓

$1

and, calling once this function, all emails and
URLs will be replaced.

Sometimes, we want to evaluate the right
side of the substitution. We can do such a thing
using rewriting system =e=> arrow:

RULES arithmetic

\s*\d+\s*[+*-/]\s*\d+\s*

⇓e

$&

This simple example, parses a text file and
all formulae found, are evaluated. This is, in-
deed, a fast and easy way to change texts.

The =b=> arrow does not have a left hand
side, and evaluates the right hand side. So, if
we need a dot at the end of the string, we can
make:

⇓b

$_.="."

Note that this is different from

$==>.

because there will be a endless loop. Mean-
while, it will work fine if you write:

[^.]$==>.

Finally, we can impose conditions to each
rule, along with the matching pattern. For an
example purpose, we have defined a user hash
(%user) that associates user names to their full
names. We can write:

\b(\w+)\b==>$user{$1} !! defined($user{$1})

This way, each word is checked, but only the
ones that match with a user name will be sub-
stituted.

3 Text to words

To read a text, we must divide it into smaller
tokens. These token can be, first, sentences and,
later, words.

Text can’t be divided straight away to words
because we need sentence delimiters to check the
sentence type (interrogative, exclamative or im-
perative) and make prosodic works.

The sentence text is, then, divided by spaces
or commas to words. These words are lower
cased and checked on a phoneme dictionary.
This dictionary can contain full translations of
Portuguese to SAMPA or semi-translated ones
that will be transformed, again, with the trans-
formation rules.

This dictionary have the following syntax:

dic :: line dic
line :: word ’=’ SAMPA

| word ’=’ ’!’ SEMI-SAMPA
| prefix ’*’ ’=’ SEMI-SAMPA ’*’

We explain how this dictionary is used on
the next section.

4 Words to SAMPA

To translate words to SAMPA, we need a word.
Taking this word, we will check if it exists on
the dictionary file:

• If it finds a word and its full SAMPA
translation (first case), its translation is
returned;

• If it exists, but it has an exclamation
mark (second case), it is substituted by
the SEMI-SAMPA code and the process
continues;

• If none of them exists, the last letter
is substituted with an asterisk (*) and
checked on the dictionary. If it does ex-
ists, the prefix text (before the asterisk)
is substituted by SEMI-SAMPA and the
rest of the word is concatenated and the
process continues with the rewrite rules.
But, if it does not exists, we take off the
last letter before the asterisk, and check it
again, until the word disappear.
These asterisks are used to signal that
there is an exception for words starting
that way. So, with only one of these rules
we can process a lot of words (verbal con-
structs, and so on).

3

• If there isn’t a prefix for the word, the pro-
cess continues to the rewrite rules.

This rewriting system uses two functions.
The first one, tries to convert simple letters se-
quences to it’s respective phonemes (SAMPA
and some pseudo-SAMPA ones) and the sec-
ond one, tries to convert it all to SAMPA. Some
pseudo-SAMPA is left to be possible to make
some sounds take some more time.

Some letter have two or more different sound
if they appear between specific letters. So, we
have rules like

($vg)x($vg)==>$1z$2

where the $vg variable contains all the let-
ters and SAMPA phonemes that should be con-
sidered vowels.

There are other cases where some letters ap-
pearing in the beginning of words should be read
differently for the cases where it appears in the
middle of some others.

These rewriting rules try to find the tonic
syllable, too. This is done checking if certain
sequences of letters are found on the end of the
word.

5 Transformation of adja-
cent words

When reading, people tend to join some letters.
As in English we can write “aren’t” instead of
“are not”, Portuguese speakers do several oral
contractions.

For this purpose, we decided to make a new
set of rules to rewrite sentences joining some
word vowels, like

este elefante −→ est’elefante

↓

eSt@ elefant@ −→ eStelefant@

or concatenating some words

és esperto −→ ézesperto

↓

ES 6jSpertu −→ Ez6jSpertu

These rules have a slash delimiting words, so
the two examples showed before, would be:

@/([ea])==>$1
S/6==>z/e

We should make it clear that these rules
should join SAMPA words, and no Portuguese
words. This is the reason we use an uppercase
S on the second rule, instead of a lowercase one.

6 Prosodic transformer

This is another rewriting system. This is, prob-
ably, the most complicated one.

First, we define a set of letters and its respec-
tive duration. Then we match the tonic syllable,
to make sound frequency go up or down some
time later. For this, we define a set of com-
mands, like =Sub, =Sup and =Pause to make fre-
quency go down, frequency go up and pause the
sound for some time.

Here are some examples of frequency varia-
tions for interrogative sentences:

($vg):\? ==>$1=Sub=Sup=Pausa500
($vg):($vg)\?==>$1=Sub $2=Sup=Pausa500im
($vg):($con)($vg)\?==>$1=Sub $2 $3=Sup=Pausa500

Note that these colons symbolize the first
vowel from the tonic syllable. Thus, there are
some rules that make sound frequency go up, at
the colon, and go down slighty, letter by letter,
to the end of the word:

($vg): ==>$1=Acen

($vg)=Acen==>\n$1-dur=$durac{$1}-30-130

At the end, we replace these commands with
their respective frequency numbers and send
them to the MBROLA[1] phoneme file for later
conversion to wave and playback.

The monochordic version of this system was
hard to understand. After applying a random
transformation, making sound vary randomly,
it was better understandable. Finally, using our
simple prosodic transformer, we can understand
even the differences between interrogative and
imperative sentences. Of course, this system
is very incomplete, and futher alterations will
make it work better.

7 Non words to words

Before tokenizing text to words, we thought it
would be useful to translate numbers, emails
and URLs to a readable form. This is an ad-
diction to the basic Text-to-Speech system that
make it more sophisticated for real use.

4

7.1 Numbers to Words

The first one, for numbers, takes a number, de-
composes it into the various components (uni-
ties, decimal, and so on) and translates each
of them to the corresponding text form. This
example will show only a small piece of the
rewritng system because it is very long:

RULES number
10==>dez
11==>onze
12==>doze
[...]
18==>dezoito
19==>dezanove
20==>vinte
2(\d)==>vinte e $1
30==>trinta
3(\d)==>trinta e $1
[...]
70==>setenta
7(\d)==>setenta e $1
80==>oitenta
8(\d)==>oitenta e $1
90==>noventa
9(\d)==>noventa e $1
1==>um
2==>dois
[...]
8==>oito
9==>nove
0$==>zero

The complete set of rules to translate num-
bers from zero to 999 999 uses about of 80 lines.

7.2 URLs to Words

The second rewriting system takes emails and
URL’s and textifies them. On emails, words
smaller than four letters are spelt, and others
are read normally. The at symbol is read, as
well as the dots. Meanwhile, we put some pauses
after each dot to make it more understandable.

This example is a bit more complicated. Be-
cause we want to translate the email to words,
we will, probably, have endless loops. We want
words of three or less characters to be spelt and
bigger words read normally.

For this, we defined a associative array (we
could make another rewriting system for this)
that associates each letter to it’s pronunciation:

%letters = {
’a’ => ’á’,

’b’ => ’bê’,
’c’ => ’cê’,
...
’z’ => ’zê’ }

If you make a system like,

[a-zA-Z]{1,3}?\b

⇓e
join("",map{$letters{lc $_}}split(//,$1))

after substituting letters for their pronuncia-
tion, they will be replaced again and again, for-
ever.

The solution we encounter to make this
work, was to place a token that will go from the
beginning to the end of the string. The result
will be:
=b=> $_ = "_$_"

_\. ==> , ponto _

_\@ ==> , arroba _

_([a-zA-Z]{1,3}?)\b =e=> join("", map

{$letters{$lc($_)}}

split (//,$1))."_"

_(.+?)\b ==> $1 _

_$==>

Explaining these rules:

• Place the token underscore () at the be-
ginning of the text (this token is not
the best one, because e-mails can contain
them, but it makes easier to explain);

• Replace underscores followed by a dot by
the word ponto followed by the under-
score;

• Make the same thing with the at symbol;

• Words with one to three letters preceded
by underscore, are translated, each letter
to its word form, joined together and an
underscore placed after the expression so
it won’t be processed again.

• Place the token after words with more
than three letters;

• If the token is at the end of the string,
remove it!

For a better understanding, look at this ex-
ample:

1. cj@di.servidor.pt
2. _cj@di.servidor.pt
3. cê jota _@di.servidor.pt
4. cê jota,arroba _di.servidor.pt
5. cê jota,arroba dê ı́ _.servidor.pt

5

6. cê jota,arroba dê ı́,ponto _servidor.pt
7. cê jota,arroba dê ı́,ponto servidor _.pt
8. cê jota,arroba dê ı́,ponto servidor,ponto _pt
9. cê jota,arroba dê ı́,ponto servidor,ponto pê tê_

10. cê jota,arroba dê ı́,ponto servidor,ponto pê tê

8 Application Examples

In this section we provide two simple examples
of how to use pt::speaker for real applications.

8.1 Telephone Numbers

Now that we are in the era of mobile phones that
recognize our voice and connects directly to the
person we want, we can make the opposite thing
using a simple system. Imagine a database file
with nicknames, full names and the respective
telephone numbers. We want that, given a nick-
name, the program read the full name and the
telephone number.

Look to a simple database file:

maria:Maria Alice:999222323
manuel:Manuel Jo~ao:999323222

The perl program, will be something like this
loads the dictionary, searches the nickname we
want, and reads it:

Charge dictionary
open DIC, "dic";
while(<DIC>) {
($nick,$name,$num)=split /:/;
$dic{$nick}=[$name,$num];
}
close DIC;

Read a nick
$nick = <>;
if (defined($n = $dic{$nick})) {
build the sentence to read
"the telephone number of XXX is xxx
$s = "O telefone do $name é ";
split the number by three digits
to be more easily understandable
$n->[1]=~/^(...)(...)(...)$/;
$s.="$1 $2 $3";
pt::speaker::speak($s);

} else {
say that we didn’t fint it
pt::speaker::speak("n~ao encontrei")

}

8.2 HTML Table Of Contents

Let’s look to yet another example of usability
for this module. We have an XHTML1 file and
want to read the headings:

use XML::DT;
use pt::speaker;

%handler = (
’-default’ => sub{},
’h1’ => sub {
$h2=0;
$h1++;
Say that it is a chapter
$s = "Capı́tulo $h1: $c";
pt::speaker::speak($s);

}
’h2’ => sub {
$h2++;
Say that it is a section
$s = "Secç~ao $h1 ponto $h2: $c";
pt::speaker::speak($s);

}
);

dt(shift,%handler);

This example can be a little weird at the first
look, but it’s easy to understand the idea: read
each heading 1 as chapters and each heading 2
as sections, number them and read the table of
contents.

9 Conclusions

By this article, we can conclude that the trans-
formation of text to sound can be done with sim-
ple substitutions, and a little of language pro-
cessing techniques.

This framework can be enlarged and made
more powerful. The simple act of adding a rule
on any of the rewriting systems make a real dif-
ference on the sound generated. There is the
possibility to make an application to check, ac-
cordingly to a phonetic dictionary, the percent-
age of words we match correctly. This can help
any of us to add or remove rules from the rewrit-
ing system, knowing the level of changes that
operation will bring.

The possibility to add some functions to
translate numbers, email addresses, URLs, time

1not HTML so we can use a XML tool like XML::DT[4]

6

of day or acronyms. It’s simple to add a XML[3]
parser to make various types of transformations
accordingly with the tag we are looking into.
For example, we can make some tags to be spelt,
other to be realced with higher frequency, tele-
phone numbers to be read by two or three num-
bers set, and so on.

We can check that the main power of this
framework is the rewriting system that makes
almost all the text-to-speech.

Futher development may include an adap-
tation of the system to the Festival[5] Speech
Syntethis System that have more power than
the MBrola system.

The simple transformation from words to
phoneme symbols can be rewriten, again, to
LATEX[7], making the habitual phonema syntax
we are used to under dictionaries.

References

[1] The MBROLA Project: Towards a Freely
Available Multilingual Speech Synthesizer.
http://tcts.fpms.ac.be/synthesis/mbrola.html.

[2] SAMPA: computer readable phonetic al-
phabet. http://www.phon.ucl.ac.uk/home/-
sampa/home.htm.

[3] eXtended Markup Language (XML) ver-
sion 1.0 recommendation. World Wide
Web Consortium, 10 February 1998.
http://www.w3.org/TR/1998/REC-xml-
19980210.html/.

[4] Almeida, J.J. & Ramanho, José Carlos.
Xml::dt a perl down-translation module. In
XML-Europe’99, Granada - Espanha, May
1999.

[5] Black, Alan W. & Taylor, Paul & Caley,
Richard. The Festival Speech Synthesis Sys-
tem. 1999. Edition 1.4.

[6] Christiansen, Tom & Torkington, Nathan.
Perl Cookbook. O’Reilly & Associates, Inc.,
1999.

[7] Goossens, Michel & Mittelbach, Frank &
Samarin, Alexander. The LATEX Compan-
ion. Addison-Wesley, 1999.

[8] Wall, Larry & Christiansen, Tom &
Schuartz, Randal. Programming Perl.
O’Reilly & Associates, Inc.

7

